
Integrating literature-constrained and data-driven inference of
signalling networks with CNORfeeder

(version 1.0.0 and above)

October 29, 2024

Contents
1 Overview 1

2 Installation 2

3 Introduction 2

4 Example 3
4.1 A. Inference - CNORfeeder . 3
4.2 B. Compression - CellNOptR . 4
4.3 C. Integration - CNORfeeder . 4
4.4 D. Weighting - CNORfeeder . 6
4.5 E. Training - CellNOptR . 6

5 Dynamic Feeder 8
5.1 I. Loading the toy example and performing the initial ODE analysis 9
5.2 II. Identifying poorly-fitted measurements . 11
5.3 III. Integration . 11
5.4 IV. Final fit . 12

1 Overview
This vignette shows how to install and use CNORfeeder. CNORfeeder is an R package wich allows to
integrate information derived from prior knowledge about signalling networks, with information derived
strictly from data using reverse engineering methods. The aim is to overcome limitations due to links
missing in the prior knowledge becuase of uncompleteness of databases or lack of biological knowledge about
certain processes. In particular, CNORfeeder is developed to be combined with the Bioconductor package
CellNOptR which allows to train a prior knowledge network to data in order to obtain the logic model with
best fit the data. The integration of literature-constrained and data-driven inference of signalling networks
allows also to overcome limitations of strictly data-driven reverse-engineering methods, which are generally
of limited biological interpretability being restricted to measured and perturbed nodes, thus overlooking the
rest of the network. The name CNORfeeder refers to the ability of the package to feed the prior knowledge
network in a combined pipeline with CellNOptR (also called CNOR).

1

2 Installation
This software is written in the R language, so in order to use it you will need to have R installed on your
computer. For more information and download of R, please refer to http://www.r-project.org/. For more
information about how to install R packages, please refer to http://cran.r-project.org/doc/manuals/
R-admin.html#Installing-packages. This package relies on several Bioconductor packages (CellNOptR,
RBGL, graph, minet) and CRAN packages (igraph catnet). The following code installs the CNORfeeder
dependencies and suggested packages that are on Bioconductor website, open an R session and type:

> source("http://bioconductor.org/biocLite.R")
> biocLite(c("RBGL","graph","minet","CellNOptR","igraph","catnet"))

Before starting this tutorial you also need to install the package CNORfeeder. You can either install
CNORfeeder from Bioconductor by typing:

> source("http://bioconductor.org/biocLite.R")
> biocLite("CNORfeeder")

or from a tar ball as follows:

> install.packages("path_to_CNORfeeder/CNORfeeder_1.0.0.tar.gz",
+ repos=NULL, type="source")

or, using the R GUI by clicking on "Packages & Data" then "Package installer", then choosing "local source"
from the dropdown menu, clicking "install", choosing CNORfeeder_1.0.0.tar.gz and finally clicking "open".

A series of books about R can be found on the R project website (http://www.r-project.org/), and
many tutorials are available on the internet. If you are a complete beginner, all you need to know is that by
typing "?nameOfFunction" you get the help page about the function that you are interested in.

3 Introduction
The package CNORfeeder permits to extend a network derived from literature with links derived strictly
from the data via various inference methods using information on physical interactions of proteins to guide
and validate the integration of links, as described in [1]. The package is designed to be integrated with
CellNOptR, a package described in [4] and based on methods described in [3] (see http://www.cellnopt.org
for further details on the project). The integrated pipeline is illustrated in Figure 1 where steps performed
by CNORfeeder are represented in cyan boxes and the ones performed by CellNOptR are in magenta boxes.

A Data are used to infer a strictly data-driven network (DDN) using reverse-engineering methods (as for
now FEED, ARACNe, CLR and Bayesian networks are implemented);

B the prior knowledge network (PKN) is compressed according to the data (green, red and blue nodes
are respectively stimulated, inhibited and measured), removing non-identifiable nodes (dashed ones);

C the compressed network is integrated with the DDN (blue links are obtained from the DDN and black
ones from the PKN);

D information derived from protein-protein interaction network (PIN) is used to support and prioritize
integrated links;

E the integrated network is used as input for the training: in trained model, thick black lines denote
interactions (and gates) in final model, and light-grey links present in integrated network but not in
trained model.

2

http://www.r-project.org/
http://cran.r-project.org/doc/manuals/R-admin.html#Installing-packages
http://cran.r-project.org/doc/manuals/R-admin.html#Installing-packages
http://www.r-project.org/
http://www.cellnopt.org

Figure 1: Integrated CNORfeeder - CellNOptR pipeline. Figure taken from [1].

4 Example
We will illustrate the use of package CNORfeeder showing, step by step, the analysis described in [1]. It
is performed on a real data set, which is a part of the network analysed in [3] and comprises 40 species
and 58 interactions in the PKN. This network was also used for the signaling challenge in DREAM 4 (see
http://www.the-dream-project.org/). The associated data was collected in hepatocellular carcinoma
cell line HepG2 (see [2]). Phosphorylation of seven proteins (akt, erk12, ikb, jnk12, p38, hsp27, mek12) is
measured 30 min after combinatorial stimulation with four ligands (tnfa, il1a, igf1, tgfa) and four inhibitors
(pi3k, ikk, p38, mek12). The level of phosphorylation of proteins is measured using the Luminex xMAP
assay and provides a value of the phosphorylation in arbitrary units, that can be used to compare values
at two conditions. In our case we compare the values between 0 and 30, and this change is a proxy of the
induced activation of the corresponding protein. The normalization of this data to a value between 0 and 1
is achieved using a method based on a set of thresholds as described in [3].

First of all we load the library

> library(CNORfeeder)

and the data

> # load the data already formatted as CNOlist
> data(CNOlistDREAM,package="CellNOptR")
> # load the model (PKN) already in the CNO format
> data(DreamModel,package="CellNOptR")

For additional information about how to read the data see CellNOptR documentation.

4.1 A. Inference - CNORfeeder
Different methods can be used to reverse-engineer a network purely from data. CNORfeeder includes a native
method, FEED, developed specifically to infer signalling network from perturbation experiments (that is an
improved version of the method described in [5]). Since we believe that different inference methods can
provide complementary insights into the same problem, other three approaches have been imported from
other packages: two methods based on mutual information (i.e. CLR and ARACNE from the R package
minet) and one based on Bayesian networks (from the R package catnet).

The three functions provided to infer a network strictly from data are the following:

3

http://www.the-dream-project.org/

1. makeBTables can be used to infer a cause-effect network interpreted as Boolean tables using the method
FEED [5];

2. MIinference allows to use the R package minet ([6]) to infer networks based on mutual information,
i.e. ARACNE and CLR methods;

3. Binference allows to use the R package catnet (http://cran.r-project.org/web/packages/catnet/
index.html) to derive Bayesian networks;

In this example, the FEED method (descirbed in [5]) is applied. The inferred DDN is encoded in Boolean
tables. For each protein, a Boolean table is inferred having one columns for each stimulus and one row for
each inhibitor. If a stimulus produces a significant effect on the activity level of the protein this is codified
with a 1 in the corresponding column, if also the inhibitor affects the protein there is a 2 in the corresponding
cell. The sign of the regulation is coded in separate tables. Significance is assessed taking into account the
experimental error. Parameter k is the parameter which determines the threshold of significancy of the effect
of stimuli and inhibitors, being multiplied by the measurement error in order to assess the relevance of a
link. Tuning parameter k allows to adjust the sparsity of the network.

> BTable <- makeBTables(CNOlist=CNOlistDREAM, k=2, measErr=c(0.1, 0))

Please note that makeBTables can handle multiple time-point data and links are added if their effect is
significant in at least one time point. As for MIinference and Binference only one steady state data shoud be
provided for each experimental condition. The resulting network is shown in Figure 2, upper panel. FEED
method also allows to rank links according to the upper limit value of parameter k allowing the presence of
the link.

> Lrank <- linksRanking(CNOlist=CNOlistDREAM, measErr=c(0.1, 0), savefile=FALSE)

4.2 B. Compression - CellNOptR
The preprocessing step includes the compression of the network to exclude non-identifiable nodes; the full
details of preprocessing the model can be found in the CellNOptR package (see vignette for comprehensive
explanation).

> model<-preprocessing(data=CNOlistDREAM, model=DreamModel)

4.3 C. Integration - CNORfeeder
The inferred DDN is used to integrate the PKN in order to include links that are missining in the prior
knowledge but seems to be supported by data. We have to take into account that networks inferred directly
from data (DDNs) are limited only to measured, inhibited and stimulated nodes, thus a link in the DDN
can correspond to multiple links in th PKN.

> modelIntegr <- mapBTables2model(BTable=BTable,model=model,allInter=TRUE)

> modelIntegr$reacID[modelIntegr$indexIntegr]

The resulting network model can be plotted as follows (Figure 2, lower panel), using the indexIntegr
argument to highlight in purple integrated links:

> plotModel(model=modelIntegr, CNOlist=CNOlistDREAM, indexIntegr=modelIntegr$indexIntegr)

4

http://cran.r-project.org/web/packages/catnet/index.html
http://cran.r-project.org/web/packages/catnet/index.html

ikk

ikb

p38

igf1

akt

il1a

jnk12

mek12

and

tgfa

pi3k

and

tnfa

erk12 hsp27

igf1

akt

pi3k

ras

and

and andand

tgfa

mek12

and

and

and

il1a

map3k7map3k1

ikk

p38

jnk12

and

and

and

and

tnfa

mkk4

andand

and

and

andand

hsp27

andand and

and

and

and

and

and

erk12

and

and

ikb

and and

and

and and

Figure 2: Upper panel : data-drive network (DDN) inferred using FEED method. Lower panel : integrated
network, the prior knowledge network is intepreted as a logic model with all possible AND and OR gates,
links added based on data-driven reverse-engineering methods are highlighted in purple.

5

4.4 D. Weighting - CNORfeeder
Links inferred based only on data are, in principle, less reliable than those derived from prior knowledge,
thus we allow to weight added links differently. The attribute integrFac is the multiplicative factor to
differently prioritize integrated links during the optimization (next step). A higher value of integrFac forces
the genetic algorothm used for optimization, to strongly prioritize links from the PKN and to limit the choice
of integrated links, even if their presence in the network model improves the fit of the model to the data. If
integrFac is set equal to 1, all links have the same weight and the optimization algorithm will select those
links which minimize the fit, disregarding if they are derived from data or from prior knowledge.

> modelIntegrWeight <- weighting(modelIntegr=modelIntegr, PKNmodel=DreamModel,
+ CNOlist=CNOlistDREAM, integrFac=10)

This function return the same model with an additional field that is the weight assigned to each link,
thus preparing it for the optimization (see next section).

Information derived from protein-protein networks (PIN) can also be used to differently prioritize in-
tegrated links, with the basic idea that a shorter path in the PIN corresponds to a more reliable link in
the PKN. A PIN (PPINigraph) is provided with the package and can be passed to the PPI attribute, as
shown in the example, in order to differently weight links (note that Uniprot IDs must be provided, see
UniprotIDdream as an example of the list structure to be used).

> data(PPINigraph,package="CNORfeeder")
> data(UniprotIDdream,package="CNORfeeder")
> modelIntegrWeight <- weighting(modelIntegr=modelIntegr, PKNmodel=DreamModel,
+ CNOlist=CNOlistDREAM, integrFac=10,
+ UniprotID=UniprotIDdream, PPI=PPINigraph)

Users can include their own interaction network passing it as argument PPI to the function weighting.
The interaction network should be passes as an igraph where proteins are nodes and edges represent the
interactions (see weighting manual for further details).

4.5 E. Training - CellNOptR
The integrated network can be optimized using CellNOptR; the function gaBinaryT1W of CNORfeeder
package is a slightly modified version of gaBinaryT1 function of package CellNOptR in order to take into
account the different weigths that can be assigned to each link. A bipartite objective function is used to
balance fit and size, that is to find the model which best describe data with the minumum number of links
(see [3] and the vignette of CellNOptR for a comprehensive description).

> # training to data using genetic algorithm (run longer to obtain better results)
> DreamT1opt<-gaBinaryT1W(CNOlist=CNOlistDREAM, model=modelIntegrWeight,
+ maxGens=2, popSize=5, verbose=FALSE)

The optimal model and the simulated and real data (shown in Figure 5) can be visualized using the
following commands of CellNOptR:

> # model
> plotModel(model=modelIntegrWeight, CNOlist=CNOlistDREAM, bString=DreamT1opt$bString)
> # data
> cutAndPlotResultsT1(model=modelIntegrWeight, CNOlist=CNOlistDREAM,
+ bString=DreamT1opt$bString)

When the integrated network is trained to the data, the model which best describes the data with the
minimum number of links is selected. Integrated links which improves the fit to the data with respect to the
PKN alone are plausible links that where missing in the PKN. The functionality of this connections could
be further experimentally tested, for example, using methods as RNA interference to knock out the gene
corresponding to the upstream protein and looking at the effect on the downstream protein.

6

map3k7

mkk4

ikk

p38

hsp27

jnk12

mek12

erk12

and

pi3k

map3k1 akt

ras

igf1 tgfail1atnfa

ikb

● ●

akt

● ●

erk12

● ●

ikb

● ●

jnk12

● ●

p38

● ●

hsp27

● ●

mek12

● ●

Stim Inh

●

●

● ●

0.5

●

●

● ●

0.5

● ●● ●

0.5

●

●

●

●

0.5

●

●

●

●

0.5

● ●● ●

0.5

●
●

● ●

0.5

● ●● ●

0.5

●

●

●

●

0 30

0.5

● ●● ●

● ●● ●

● ●● ●

● ●● ●

●

●

●

●

● ●● ●

● ●● ●

● ●● ●

● ●● ●

0 30

● ●● ●

●

●

●

●

●

●

●

●

● ●● ●

● ●● ●

● ●● ●

●

●

●

●

●

●

●

●

● ●● ●

0 30

● ●● ●

● ●● ●

●

●

●

●

● ●● ●

● ●● ●

● ●● ●

● ●● ●

●

●

●

●

● ●● ●

0 30

● ●● ●

● ●● ●

●

●

●

●

● ●● ●

●

●

● ●

● ●● ●

● ●● ●

●

●

●

●

● ●● ●

0 30

● ●● ●

● ●● ●

●

●

●

●

● ●● ●

● ●● ●

● ●● ●

● ●● ●

●

●

●

●

● ●● ●

0 30

● ●● ●

● ●● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

● ●

● ●

● ●

0 30

ig
f1

il1
a

tg
fa

tn
fa ik
ki

m
ek

12
i

pi
3k

i

p3
8i

● ●

Error

1

0.5

0

Figure 3: Left panel : optimal model. Right panel : fit to experimental data.

7

A

B

C

D

E

G

H

PKN

A E G D F H
1 1 1 … … …
1 0 1 … … …
0 1 1 … … …

Data

F

Initial
training

A E G D F H
1 1 1
1 0 0
0 0 1

Search from
database

Infer from
data

A

B

C

D

E

G

H

F

Final
training

I

II

III

III IV

V
Quality Check

AIC
BIC

Figure 4: Dynamic-Feeder pipeline.

5 Dynamic Feeder
Dynamic-Feeder represents an extension of the CNORfeeder implementation described in the chapters above
by inferring new possible functional interactions missing in the PKN for dynamic models casted as logic-based
Ordinary Differential Equations (ODEs) from time-series data.

Through the figure below 4, we show a step by-step summary of the Dynamic-Feeder pipeline and apply
it to a small toy example [7] which was generated manually based on the network contained in [8]. This
network was designed to output a variety of dynamics (oscillations, transience etc.).

8

5.1 I. Loading the toy example and performing the initial ODE analysis
Loading the necessary packages and the toy example containing 16 interactions and 15 species (of which 2
are stimulated, 2 are inhibited and 7 are measrued). Data was generated in-silico across each measuremnt
at each perturbation experimental condition for 3 time-points (0, 10, 30).

> # loading the necessary packages
> library(CellNOptR)
> library(MEIGOR)
> library(CNORode)
> library(doParallel)
> library(readr)
> library(infotheo)
> library(igraph)
> library(OmnipathR)
> library(CNORfeeder)
> # loading the model
> data(ToyModel_Gene, package="CNORfeeder")
> # loading the data
> data(CNOlistToy_Gene, package="CNORfeeder")
> # plotting the model and the data
> plotModel(model = model, CNOlist = cnolist)
> plotCNOlist(CNOlist = cnolist)

EGFTNF

TRAF6

MAPK8 MAPK14

PIK3CAKRAS

RAF1 AKT1

MAP2K1

MAPK1

NFKB1 JUN HSPB1 RPS6KA1

AKT1 HSPB1 NFKB1 MAPK1 RPS6KA1 MAPK8 JUN Cues

0.
0

0.
5

0.
0

0.
4

0.
8

0.
0

0.
5

0.
0

0.
4

0.
8

0.
0

0.
5

0.
0

0.
4

0.
8

0.
0

0.
5

0.
0

0.
4

0.
8

0.
0

0.
5

0.
0

0.
4

0.
8

0.
0

0.
5

0.
0

0.
4

0.
8

0.
0

0.
5

0.
0

0.
4

0.
8

0.
0

0.
5

0.
0

0.
4

0.
8

0 10 30

0.
0

0.
5

0 10 30 0 10 30 0 10 30 0 10 30 0 10 30 0 10 30

E
G
F

TN
F

R
A
F1
-i

P
IK
3C
A
-i

0.
0

0.
4

0.
8

Figure 5: Left panel : initial model. Right panel : in-silico data.

Optionally, the user can load pathway resources. Below, we show how we can load from OmniPath [9] (by
using OmniPathR package) interactions from three other resources: SignaLink3, PhosphoSite and Signor.
We only retain those directed interactions which either are activatory or inhibitory. Besides the resource,
users can choose to have interactions based on number of references, resources, etc. For more about this,
please visit https://github.com/saezlab/OmnipathR.

9

> ## Loading database
> data(database, package="CNORfeeder")
> ## Alternatively, users can download the database from Omnipath and retain only
> ## activatory/inhibitory interactions as shown below.
> ## Please note that OmniPath is in continuous update and new links are
> ## continuously added
>
> # interactions <- import_Omnipath_Interactions(filter_databases=
> # c("SignaLink3",
> # "PhosphoSite",
> # "Signor"))
> # interactions = interactions[which(interactions$is_stimulation+interactions$is_inhibition==1),]
> # database = matrix(data = , nrow = nrow(interactions), ncol = 3)
> # database[, 1] = interactions$source_genesymbol
> # database[which(interactions$is_stimulation==1), 2] = "1"
> # database[which(interactions$is_inhibition==1), 2] = "-1"
> # database[, 3] = interactions$target_genesymbol

Now, we perform the initial ODE analysis and generate the simulation results of our optimized model:

> # set initial parameters (here parameters k and tau are optimised and n fixed to 3)
> ode_parameters=createLBodeContPars(model, LB_n = 1, LB_k = 0,
+ LB_tau = 0, UB_n = 3, UB_k = 1,
+ UB_tau = 1, default_n = 3,
+ default_k = 0.5, default_tau = 0.01,
+ opt_n = FALSE, opt_k = TRUE,
+ opt_tau = TRUE, random = TRUE)
> ## Parameter Optimization
> # essm
> paramsSSm=defaultParametersSSm()
> paramsSSm$local_solver = "DHC"
> paramsSSm$maxtime = 60;
> paramsSSm$maxeval = Inf;
> paramsSSm$atol=1e-6;
> paramsSSm$reltol=1e-6;
> paramsSSm$nan_fac=1000;
> paramsSSm$dim_refset=30;
> paramsSSm$n_diverse=1000;
> paramsSSm$maxStepSize=Inf;
> paramsSSm$maxNumSteps=10000;
> paramsSSm$transfer_function = 4;
> paramsSSm$lambda_tau=0.1
> paramsSSm$lambda_k=0.01
> paramsSSm$bootstrap=F
> paramsSSm$SSpenalty_fac=0
> paramsSSm$SScontrolPenalty_fac=0
> ## Training of the initial model
> opt_pars=parEstimationLBode(cnolist, model, method="essm",
+ ode_parameters=ode_parameters, paramsSSm=paramsSSm)
> simData = plotLBodeFitness(cnolist = cnolist, model = model,
+ ode_parameters = opt_pars, transfer_function = 4)

The figure below 6 shows how our optimized model fits the data.

10

AKT1 HSPB1 NFKB1 MAPK1 RPS6KA1 MAPK8 JUN Stim Inh

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0 10 30

0.5

0 10 30 0 10 30 0 10 30 0 10 30 0 10 30 0 10 30

EG
F

TN
F

RA
F1
-i

PI
K
3C
A
-i

Error

1

0.5

0

Figure 6: Initial Fit

5.2 II. Identifying poorly-fitted measurements
As we can notice, our model performs worse for the NFKB1 measurement when EGF and PIK3CA are
being perturbed. As a next step, we then try to identify poorly-fitted measurements. A measurement is
considered as poorly-fitted on a specific experimental condition, if the deviation between experimental data
and prediction of the initial model is higher than a threshold parameter mseThresh which can be controlled
by the user. On this case we have:

> # Identifying the mis-fits (measurements with mse worse than 0.05)
> indices = identifyMisfitIndices(cnolist = cnolist, model = model,
+ simData = simData, mseThresh = 0.05)

The indices object which is returned represents a list of indices telling which measurement and at which
experimental condition is poorly predicted by our model. It also contains an mse matrix indicating the misfit
between our initial model predictions for each observation (quantifide by the Mean Squared Error value).

Alternatively, users can bypass the initial training of the model and add new links through the FEED
or database search regardless how well somee measurements were already fitted simply by setting sim-
Data=NULL. In this case:

> # Identifying the mis-fits (measurements with mse worse than 0.05)
> indices = identifyMisfitIndices(cnolist = cnolist, model = model, simData = NULL)

5.3 III. Integration
After identifying the poorly-fitted measurements, we then try to find possible links between corresponding
cues and measurements and which can potentially identify mising mechanisms which yielded the poor pre-
diction. The user can either do a search from the database object, derivel the links from data-alone based on
the FEED algorithm, or both. Below we show an example about how we can infer interactions from both
approaches and show the new expanded PKN with newly integrated links colored in purple 7:

11

> # interactions from the database and from the FEED algorithm which we want to integrate
> feederObject = buildFeederObjectDynamic(model = model, cnolist = cnolist,
+ indices = indices, database = database,
+ DDN = TRUE, pathLength = 2) # max path-length=2
> # for database search
>
> integratedModel = integrateLinks(feederObject = feederObject, cnolist = cnolist,
+ database = database)
> plotModel(model = integratedModel$model, CNOlist = cnolist,
+ indexIntegr = integratedModel$integLinksIdx)

5.4 IV. Final fit
Finally, we then optimize the integrated PKN to data and observe the effects of the new links to the fit. In
order to avoid overfitting, we penalize the new links with factors higher than the interactions which were
already present on the PKN. We show this for two cases:

1. By applying moderate penalty factors over the new links (200 times higher for interactions coming
from FEED [1] and 10 times higher for interactions coming from database compared to the weight applied
over the interactions in the PKN) and nodes (10 times higher copared to the weight for the nodes present
in the PKN) 8:

> # interactions from the database and from the FEED algorithm which we want to integrate
> ode_parameters=createLBodeContPars(integratedModel$model, LB_n = 1,
+ LB_k = 0, LB_tau = 0, UB_n = 3,
+ UB_k = 1, UB_tau = 1, default_n = 3,
+ default_k = 0.5, default_tau = 0.01,
+ opt_n = FALSE, opt_k = TRUE,
+ opt_tau = TRUE, random = TRUE)
> res1 = runDynamicFeeder(cnolist = cnolist, integratedModel = integratedModel,
+ ode_parameters = ode_parameters, paramsSSm = paramsSSm,
+ penFactor_k = 2, penFactorPIN_k = 0.1, penFactor_tau = 1)
> plotLBodeFitness(cnolist = res1$CNOList, model = res1$`Integrated-Model`$model,
+ ode_parameters = res1$Parameters, transfer_function = 4)

2. By applying very high penalty factors over the new links and nodes compared to the weights assigned
to the species in the PKN 9:

> # interactions from the database and from the FEED algorithm which we want to integrate
> ode_parameters=createLBodeContPars(integratedModel$model, LB_n = 1,
+ LB_k = 0, LB_tau = 0, UB_n = 3,
+ UB_k = 1, UB_tau = 1, default_n = 3,
+ default_k = 0.5, default_tau = 0.01,
+ opt_n = FALSE, opt_k = TRUE,
+ opt_tau = TRUE, random = TRUE)
> res2 = runDynamicFeeder(cnolist = cnolist, integratedModel = integratedModel,
+ ode_parameters = ode_parameters, paramsSSm = paramsSSm,
+ penFactor_k = 10000, penFactorPIN_k = 10000,
+ penFactor_tau = 10000)
> plotLBodeFitness(cnolist = res2$CNOList, model = res2$`Integrated-Model`$model,
+ ode_parameters = res2$Parameters, transfer_function = 4)

We notice that for the case when we apply higher penalty factors, their effect over the overall fit get
attenuated as it would be expected.

12

EGF TNF

TRAF6

MAPK8MAPK14

PIK3CAKRAS

RAF1 AKT1

MAP2K1

MAPK1

AKT2

NFKB1 JUNHSPB1RPS6KA1

Figure 7: Integrated Model, newly integrated links shown in purple

13

AKT1 HSPB1 NFKB1 MAPK1 RPS6KA1 MAPK8 JUN Stim Inh

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0 10 30

0.5

0 10 30 0 10 30 0 10 30 0 10 30 0 10 30 0 10 30

EG
F

TN
F

RA
F1
-i

PI
K
3C
A
-i

Error

1

0.5

0

Figure 8: Effects of the new links to the PKN

AKT1 HSPB1 NFKB1 MAPK1 RPS6KA1 MAPK8 JUN Stim Inh

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0 10 30

0.5

0 10 30 0 10 30 0 10 30 0 10 30 0 10 30 0 10 30

EG
F

TN
F

RA
F1
-i

PI
K
3C
A
-i

Error

1

0.5

0

Figure 9: Effects of the new links to the PKN

14

References
[1] F. Eduati, J. De Las Rivas, B. Di Camillo, G. Toffolo, J. Saez-Rodriguez. Integrating literature-

constrained and data-driven inference of signalling networks. Bioinformatics, 28:18, 2311–2317, 2012.

[2] L.G. Alexopoulos, J. Saez-Rodriguez, B.D. Cosgrove, D.A. Lauffenburger, P. K. Sorger. Networks inferred
from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between
normal and transformed hepatocytes. Molecular & Cellular Proteomics, 9:9, 1849–1865, 2010.

[3] J. Saez-Rodriguez, L. Alexopoulos, J. Epperlein, R. Samaga, D. Lauffenburger, S. Klamt, P.K. Sorger.
Discrete logic modelling as a means to link protein signalling networks with functional analysis of mam-
malian signal transduction. Molecular Systems Biology, 5:331, 2009.

[4] C. Terfve, T. Cokelaer, D. Henriques, A. MacNamara, E. Goncalves, M. K. Morris, M. van Iersel, D. A.
Lauffenburger, J. Saez-Rodriguez. CellNOptR: a flexible toolkit to train protein signaling networks to
data using multiple logic formalisms. BMC Syst Biol, 6:133, 2012.

[5] F. Eduati, A. Corradin, B. Di Camillo, G. Toffolo. A Boolean approach to linear prediction for signaling
network modeling. PLoS ONE, 5(9): e12789, 2010.

[6] P. E. Meyer, F. Lafitte, G. Bontempi MINET: An open source R/Bioconductor package for mutual
information based network inference. BMC bioinformatics, 9(1), 2008.

[7] A. MacNamara, C. Terfve, D. Henriques, B.P. Bernabe, J. Saez-Rodriguez State-time spectrum of signal
transduction logic models Physical Biology. Phys Biol., 9(4):045003, 2012.

[8] J. Saez-Rodriguez, L.G. Alexoupulos, M. Zhang, M.K. Morris, D.A. Lauffenburger, P.K. Sorger Com-
paring signaling networks between normal and transformed hepatocytes using discrete logical models.
Cancer Res., 15;71(16):5400-11, 2011.

[9] D. Turei, T. Korcsmaros, J. Saez-Rodriguez. OmniPath: guidelines and gateway for literature-curated
signaling pathway resources. Nature Methods, 13, pages966 967 2016.

15

	Overview
	Installation
	Introduction
	Example
	A. Inference - CNORfeeder
	B. Compression - CellNOptR
	C. Integration - CNORfeeder
	D. Weighting - CNORfeeder
	E. Training - CellNOptR

	Dynamic Feeder
	I. Loading the toy example and performing the initial ODE analysis
	II. Identifying poorly-fitted measurements
	III. Integration
	IV. Final fit

