# Package 'signeR'

November 15, 2024

Type Package

Title Empirical Bayesian approach to mutational signature discovery

Version 2.8.0

**Author** Rafael Rosales, Rodrigo Drummond, Renan Valieris, Alexandre Defelicibus, Israel Tojal da Silva

Maintainer Renan Valieris < renan.valieris@accamargo.org.br>

**Description** The signeR package provides an empirical Bayesian approach to mutational signature discovery. It is designed to analyze single nucleotide variation (SNV) counts in cancer genomes, but can also be applied to other features as well. Functionalities to characterize signatures or genome samples according to exposure patterns are also provided.

License GPL-3

Imports BiocGenerics, Biostrings, class, grDevices, GenomeInfoDb, GenomicRanges, IRanges, nloptr, methods, stats, utils, PMCMRplus, parallel, pvclust, ppclust, clue, survival, maxstat, survivalAnalysis, future, VGAM, MASS, kknn, glmnet, e1071, randomForest, ada, future.apply, ggplot2, pROC, pheatmap, RColorBrewer, listenv, reshape2, scales, survminer, dplyr, ggpubr, cowplot, tibble, readr, shiny, shinydashboard, shinycssloaders, shinyWidgets, bsplus, DT, magrittr, tidyr, BiocFileCache, proxy, rtracklayer, BSgenome

**Depends** R (>= 3.0.2), VariantAnnotation, NMF

**LinkingTo** Rcpp, RcppArmadillo (>= 0.7.100)

SystemRequirements C++11

URL https://github.com/TojalLab/signeR

LazyData true

NeedsCompilation yes

ByteCompile TRUE

**biocViews** GenomicVariation, SomaticMutation, StatisticalMethod, Visualization

**Suggests** knitr, BSgenome.Hsapiens.UCSC.hg19, BSgenome.Hsapiens.UCSC.hg38, rmarkdown

VignetteBuilder knitr

2 signeR-package

| RoxygenNote 7.2.3                                    |
|------------------------------------------------------|
| Encoding UTF-8                                       |
| git_url https://git.bioconductor.org/packages/signeR |
| git_branch RELEASE_3_20                              |
| git_last_commit 99cef7c                              |
| git_last_commit_date 2024-10-29                      |
| Repository Bioconductor 3.20                         |
| Date/Publication 2024-11-14                          |

# **Contents**

| Index |                     | 28         |
|-------|---------------------|------------|
|       | tcga_tumors         | 27         |
|       | tcga_similarities   |            |
|       | SignExp             |            |
|       | signeRFlow          |            |
|       | signeR              | 22         |
|       | plots               | 20         |
|       | methods             | 19         |
|       | HClustExp           | 18         |
|       | generateMatrix      | 17         |
|       | FuzzyClustExp       | 15         |
|       | ExposureSurvModel   | 14         |
|       | ExposureSurvival    | 13         |
|       | ExposureGLM         | 11         |
|       | ExposureCorrelation | 10         |
|       | ExposureClassifyCV  | 9          |
|       | ExposureClassify    | 7          |
|       | DiffExp             | $\epsilon$ |
|       | cosmic_data         | 3          |
|       | signeR-package      | 2          |

signeR-package

Empirical Bayesian approach to mutational signature discovery

# Description

The signeR package provides an empirical Bayesian approach to mutational signature discovery. It is designed to analyze single nucleotide variation (SNV) counts in cancer genomes, but can also be applied to other features as well. Functionalities to characterize signatures or genome samples according to exposure patterns are also provided.

cosmic\_data 3

#### **Details**

signeR package focuses on the characterization and analysis of mutational processes. Its functionalities can be divided into three steps. Firstly, it provides tools to process VCF files and generate matrices of SNV mutation counts and mutational opportunities, both divided according to a 3bp context (mutation site and its neighboring bases). Secondly, the main part of the package takes those matrices as input and applies a Bayesian approach to estimate the number of underlying signatures and their mutational profiles. Thirdly, the package provides tools to correlate the activities of those signatures with other relevant information, e.g. clinical data, to infer conclusions about the analyzed genome samples, which can be useful for clinical applications.

#### Author(s)

Rodrigo Drummond, Rafael Rosales, Renan Valieris, Israel Tojal da Silva

Maintainer: Renan Valieris < renan.valieris@accamargo.org.br>

#### References

This work has been submitted to Bioinformatics under the title "signeR: An empirical Bayesian approach to mutational signature discovery".

L. B. Alexandrov, S. Nik-Zainal, D. C. Wedge, P. J. Campbell, and M. R. Stratton. Deciphering Signatures of Mutational Processes Operative in Human Cancer. Cell Reports, 3(1):246-259, Jan. 2013. doi:10.1016/j.celrep.2012.12.008.

A. Fischer, C. J. Illingworth, P. J. Campbell, and V. Mustonen. EMu: probabilistic inference of mutational processes and their localization in the cancer genome. Genome biology, 14(4):R39, Apr. 2013. doi:10.1186/gb-2013-14-4-r39.

## **Examples**

```
vignette(package="signeR")
```

cosmic\_data

**COSMIC Mutational Signatures** 

#### **Description**

COSMIC Mutational Signatures Data Files (SBS) v3.2.

#### **Usage**

```
data("cosmic_data")
```

#### **Format**

A data frame with 96 observations on the following 75 variables.

Substitution. Type a character vector
Trinucleotide a character vector
Somatic. Mutation. Type a character vector
SBS1 a numeric vector

4 cosmic\_data

| SBS2 | a numeric vector |
|------|------------------|
| CDC2 | a mumamia vaatam |

SBS3 a numeric vector

SBS4 a numeric vector

SBS5 a numeric vector

SBS6 a numeric vector

SBS7a a numeric vector

SBS7b a numeric vector

SBS7c a numeric vector

SBS7d a numeric vector

SBS8 a numeric vector

SBS9 a numeric vector

SBS10a a numeric vector

SBS10b a numeric vector

SBS11 a numeric vector

SBS12 a numeric vector

SBS13 a numeric vector

SBS14 a numeric vector

SBS15 a numeric vector

SBS16 a numeric vector

SBS17a a numeric vector

SBS17b a numeric vector

SBS18 a numeric vector

SBS19 a numeric vector

SBS20 a numeric vector

SBS21 a numeric vector

SBS22 a numeric vector

SBS23 a numeric vector

SBS24 a numeric vector

SBS25 a numeric vector

SBS26 a numeric vector

SBS27 a numeric vector

SBS28 a numeric vector

SBS29 a numeric vector

SBS30 a numeric vector

SBS31 a numeric vector

SBS32 a numeric vector

SBS33 a numeric vector

SBS34 a numeric vector

SBS35 a numeric vector

SBS36 a numeric vector

cosmic\_data 5

```
SBS37 a numeric vector
SBS38 a numeric vector
SBS39 a numeric vector
SBS40 a numeric vector
SBS41 a numeric vector
SBS42 a numeric vector
SBS43 a numeric vector
SBS44 a numeric vector
SBS45 a numeric vector
SBS46 a numeric vector
SBS47 a numeric vector
SBS48 a numeric vector
SBS49 a numeric vector
SBS50 a numeric vector
SBS51 a numeric vector
SBS52 a numeric vector
SBS53 a numeric vector
SBS54 a numeric vector
SBS55 a numeric vector
SBS56 a numeric vector
SBS57 a numeric vector
SBS58 a numeric vector
SBS59 a numeric vector
SBS60 a numeric vector
SBS84 a numeric vector
SBS85 a numeric vector
SBS86 a numeric vector
SBS87 a numeric vector
SBS88 a numeric vector
SBS89 a numeric vector
SBS90 a numeric vector
```

# Source

https://cancer.sanger.ac.uk/signatures/documents/453/COSMIC\_v3.2\_SBS\_GRCh38.txt

6 DiffExp

# Description

DiffExp: Identify signatures with significantly different activities among sample groups.

# Usage

```
## S4 method for signature 'SignExp,character'
DiffExp(signexp_obj, labels, max_instances=200,
    method=kruskal.test, contrast="all", quant=0.5, cutoff=0.05,
    p.adj= "BH",plot_to_file=FALSE, file="Diffexp_boxplot.pdf",
    colored=TRUE, relative = FALSE, ...)
```

# Arguments

| signexp_obj   | a SignExp object returned by signeR function.                                                                                                                                                                                                                                                                                                                  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| labels        | sample labels used to define sample groups.                                                                                                                                                                                                                                                                                                                    |
| max_instances | Maximum number of the exposure matrix instances to be analyzed. If the number of available E instances is bigger than this parameter, a subset of those will be randomly selected for analysis.                                                                                                                                                                |
| method        | algorithm used to compare each signature exposure among sample groups. Default is kruskal.test, which leads to the use of Kruskal-Wallis Rank Sum Test.                                                                                                                                                                                                        |
| contrast      | defines which sample groups will be considered in the analysis. Default is "all", which leads the algorithm to evaluate the null hypothesis of exposure levels being constant in all groups. Instead, if this parameter contains a list of group labels, the algorithm will evaluate the null hypothesis of exposure levels being constant among those groups. |
| quant         | the p-values quantile which, after log-transform, will be used as DES (Differential Exposure Score). Default is 0.5, which means the median log-transformed p-value will be considered as DES.                                                                                                                                                                 |
| p.adj         | correction method for p-values adjust at the post-hoc tests performed when there are more than two group labels. See p.adjust for options.                                                                                                                                                                                                                     |
| cutoff        | threshold for p-values quantile for signatures to be considered as showing differential exposure.                                                                                                                                                                                                                                                              |
| plot_to_file  | Whether to save the plot to the file parameter. Default is FALSE.                                                                                                                                                                                                                                                                                              |
| file          | Output file to export p-values boxplot.                                                                                                                                                                                                                                                                                                                        |
| colored       | Boolean variable, if TRUE boxplots of differentially exposed signatures will be colored in green, cutoff line will be colored in red and line segments showing the transformed p-value quantile used for DE evaluation will be colored in blue. Otherwise the plot will be black & white.                                                                      |
| relative      | Whether tests should be performed on absolute or relative signature contributions to each sample mutation. Default is FALSE (absolute contributions will be tested).                                                                                                                                                                                           |
|               |                                                                                                                                                                                                                                                                                                                                                                |

additional parameters for test algorithm defined by the method parameter.

ExposureClassify 7

#### Value

A list with the following items:

Pvquant boolean array with one entry for each signature, indicating whether it shows

differential exposure.

Pvalues matrix containing all computed p-values, with one row for each signature.

MostExposed for each differentially exposed signature, this array contains the label of the

group where it showed higher levels of exposure. Contains NA for signatures

not showing differential exposure.

Differences List of matrices, exported only when there are more than two groups in the anal-

ysis and any signature is found to be differentially active. Each matrix corresponds to one of the highlighted signatures and show the results of comparisons

among groups, with the significant ones marked as TRUE.

## **Examples**

```
# assuming signatures is the return value of signeR()
# labels vector, one for each sample
my_labels <- c("a","a","b","b")

diff_exposure <- DiffExp(signatures$SignExposures,labels=my_labels)
# see also
vignette(package="signeR")</pre>
```

ExposureClassify

Classify samples by exposure levels

#### **Description**

Assign unlabeled samples to previously defined groups.

#### Usage

```
## S4 method for signature 'SignExp,character'
ExposureClassify(signexp_obj, labels,
    method="knn", max_instances=200, k=3, weights=NA, plot_to_file=FALSE,
    file="Classification_barplot.pdf", colors=NA_character_, min_agree=0.75,...)
```

## Arguments

signexp\_obj A SignExp object returned by signeR function.

labels Sample labels. Every sample labeled as NA will be classified according to its

mutational profile and the profiles of labeled samples.

method Classification algorithm used. Default is k-Nearest Neighbors (kNN). Any other

algorithm may be used, as long as it is customized to satisfy the following con-

ditions:

Input: a matrix of labeled samples, with one sample per line and one feature per column; a matrix of unlabeled samples to classify, with the same structure; an

array of labels, with one entry for each labeled sample.

Output: an array of assigned labels, one for each unlabeled sample.

8 ExposureClassify

| max_instances | Maximum number of the exposure matrix instances to be analyzed. If the number of available E instances is bigger than this parameter, a subset of those will be randomly selected for analysis. |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| k             | Number of nearest neighbors considered for classification, used only if method=" $kNN$ ". Default is 3.                                                                                         |
| weights       | Vector of weights applied to the signatures when performing classification. Default is NA, which leads all the signatures to have weight=1.                                                     |
| plot_to_file  | Whether to save the plot to the file parameter. Default is FALSE.                                                                                                                               |
| file          | File that will be generated with classification graphic output.                                                                                                                                 |
| colors        | Array of color names, one for each sample class. Colors will be recycled if the length of this array is less than the number of classes.                                                        |
| min_agree     | Minimum frequency of agreement among individual classifications. Samples showing a frequency of agreement below this value are considered as "undefined". Default is 0.75.                      |
|               | additional parameters for classification algorithm (defined by "method" above).                                                                                                                 |

#### Value

A list with the following items:

freq Classification agreement for each unlabeled sample: the relative frequency of

assignment of each sample to the group specified in "class".

ussignment of their sample to the group speemed in thas

The assigned classes for each unlabeled sample.

4

class

allfreqs Matrix with one column for each unlabeled sample and one row for each class

label. Contains the assignment frequencies of each sample to each class.

probs As above, a matrix with unlabeled samples in columns and class labels in rows.

Contains the average probability, among repeated exposure classifications, of

each sample belonging to each class.

```
# assuming signatures is the return value of signeR()

my_labels <- c("a","a","a","a",NA,"b","b","b","b",NA)
Class <- ExposureClassify(signatures$SignExposures, labels=my_labels)
# see also
vignette(package="signeR")</pre>
```

ExposureClassifyCV 9

# Description

Splits labeled samples in k groups (deafult k=8), keeping the proportion of classes stable among groups. Classify samples in each group according to the k-1 remaining ones. Gather results and evaluate global classification performance.

# Usage

```
## S4 method for signature 'SignExp,character'
ExposureClassifyCV(signexp_obj, labels, method="knn",
    max_instances=200, k=3, weights=NA, plot_to_file=FALSE,
    file="Classification_CV_barplot.pdf", colors=NA_character_,
    min_agree=0.75, fold=8, ...)
```

# **Arguments**

fold

| guments                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| A SignExp object returned by signeR function.                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Sample labels. Unlabeled samples (NA labels) will be ignored.                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Classification algorithm used. Default is k-Nearest Neighbors (kNN). Any other algorithm may be used, as long as it is customized to satisfy the following conditions:  Input: a matrix of labeled samples, with one sample per line and one feature per column; a matrix of unlabeled samples to classify, with the same structure; an array of labels, with one entry for each labeled sample.  Output: an array of assigned labels, one for each unlabeled sample. |  |  |
| Maximum number of the exposure matrix instances to be analyzed. If the number of available E instances is bigger than this parameter, a subset of those will be randomly selected for analysis.                                                                                                                                                                                                                                                                       |  |  |
| Number of nearest neighbors considered for classification, used only if method=" $kNN$ ". Default is 3.                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Vector of weights applied to the signatures when performing classification. Default is NA, which leads all the signatures to have weight=1.                                                                                                                                                                                                                                                                                                                           |  |  |
| Whether to save the plot to the file parameter. Default is FALSE.                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| File that will be generated with cross validation graphic output.                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Array of color names, one for each sample class. Colors will be recycled if the length of this array is less than the number of classes.                                                                                                                                                                                                                                                                                                                              |  |  |
| Minimum frequency of agreement among individual classifications. Samples showing a frequency of agreement below this value are considered as "undefined". Default is 0.75.                                                                                                                                                                                                                                                                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |

Number of subsets in which labeled samples will be split

additional parameters for classification algorithm (defined by "method" above).

10 ExposureCorrelation

#### Value

A list with the following items:

confusion\_matrix

Contingency table of attributed sample classes against original labels.

class The assigned classes for each sample.

freq Classification agreement for each sample: the relative frequency of assignment

of each sample to the group specified in "class".

allfreqs Matrix with one column for each sample and one row for each class label. Con-

tains the assignment frequencies of each sample to each class.

probs As above, a matrix with samples in columns and class labels in rows. Contains

the average probability, among repeated exposure classifications, of each sample

belonging to each class.

## **Examples**

```
# assuming signatures is the return value of signeR()

my_labels <- c("a","a","a","a","b","b","b","b","b","b")
ClassCV <- ExposureClassifyCV(signatures$SignExposures, labels=my_labels,fold=5)
# see also
vignette(package="signeR")</pre>
```

ExposureCorrelation

Exposure correlation analysis (given a known sample feature)

# Description

ExposureCorrelation: Identify signatures which are significantly correlated with a provided (numeric) sample feature.

## Usage

```
## S4 method for signature 'SignExp,numeric'
ExposureCorrelation(Exposures, feature,
    method="spearman", max_instances=200, cutoff_pvalue=0.05, quant=0.5,
    plot_to_file=FALSE, file="ExposureCorrelation_plot.pdf",
    colors=TRUE,...)
```

## **Arguments**

Exposures a SignExp object returned by signeR function or a matrix of exposures (with

signatures in rows and a column for each sample).

feature numeric feature associated with each sample, such as age, weight or the expres-

sion of a gene.

method a character string indicating which correlation coefficient should be used for the

test. Options are "pearson", "kendall", or "spearman" (default).

ExposureGLM 11

max\_instances Maximum number of the exposure matrix instances to be analyzed. If the number of available E instances is bigger than this parameter, a subset of those will be randomly selected for analysis.

cutoff\_pvalue threshold for p-values quantile for signatures to be considered as showing sig-

nificant correlation.

quant the p-values quantile which, after log-transform, will be used for selecting sig-

nificantly correlated signatures. Default is 0.5, which means the median p-value

will be considered.

plot\_to\_file Whether to save the plot to the file parameter. Default is FALSE.

file Output file to export p-values boxplot and scatterplots showing the correlations

of exposures and the provided feature.

colors Boolean variable, if TRUE p-values boxplots of significantly correlated signa-

tures will be colored in green, cutoff line will be colored in red and line segments showing the transformed p-value quantile used for significance evaluation will

be colored in blue. Otherwise the plot will be black & white.

... additional parameters for test algorithm defined by the method parameter.

#### Value

A list with the following items:

Significance boolean array with one entry for each signature, indicating whether it shows

significant correlation with the provided feature.

Correlation\_quantiles

vector of correlation quantiles, with one entry for each signature.

Pvalues\_quantiles

vector of p-values quantiles used for significance evaluation.

Correlations matrix containing all computed correlations, with one row for each signature.

Pvalues matrix containing all computed p-values, with one row for each signature.

#### **Examples**

```
# assuming signatures is the return value of signeR()
# feature vector, with one value for each sample
my_feature <- rnorm(30,100,20)+signatures$SignExposures@Exp[1,,1]

Exp_corr <- ExposureCorrelation(signatures$SignExposures,feature=my_feature)
# see also
vignette(package="signeR")</pre>
```

ExposureGLM

Exposure Generalized Linear Model

#### **Description**

Fits a GLM to exposure data, with a given sample feature as the target of the model.

12 ExposureGLM

#### **Usage**

#### **Arguments**

Exposures A SignExp object returned by signeR function or a matrix of exposures (with signatures in rows and a column for each sample). feature numeric feature associated with each sample, such as age, weight or the expression of a gene. Maximum number of the exposure matrix instances to be analyzed. If the nummax\_instances ber of available E instances is bigger than this parameter, a subset of those will be randomly selected for analysis. cutoff\_pvalue threshold for p-values quantile for signatures to be considered as significant on the model. quant p-values quantile used to evaluate if signatures are significant. Default is 0.5, meaning that median p-values are adopted. Whether to save plots to the file parameter. Default is FALSE. plot\_to\_file file Output file to export p-values boxplot and scatterplots showing the correlations of exposures and the provided feature. colors Boolean variable, if TRUE p-values boxplots of significantly correlated signatures will be colored in green, cutoff line will be colored in red and line segments

be colored in blue. Otherwise the plot will be black & white.

additional parameters for test algorithm defined by the method parameter.

showing the transformed p-value quantile used for significance evaluation will

#### Value

A list with the following items:

Significance boolean array with one entry for each signature, indicating whether it shows a

significant contribution to the model.

Stats matrix of model statistics, with one line for each signature.

Pvalues vector of p-values used for significance evaluation.

```
# assuming signatures is the return value of signeR()

my_feature <- rnorm(30,100,20)+signatures$SignExposures@Exp[1,,1]
EGlm <- ExposureGLM(signatures$SignExposures, feature=my_feature)
# see also
vignette(package="signeR")</pre>
```

ExposureSurvival 13

## **Description**

ExposureSurvival: Given survival data, identify signatures that are significantly related to differences in hazards.

# Usage

```
## S4 method for signature 'SignExp,Surv'
ExposureSurvival(signexp_obj, surv, max_instances=200,
    method=logrank, quant=0.5, cutoff_pvalue=0.05, cutoff_hr=NA,
    plot_to_file=FALSE, file="ExposureSurvival_plot.pdf",
    colors=TRUE, ...)
```

# **Arguments**

| į | guments       |                                                                                                                                                                                                                                                |  |
|---|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   | signexp_obj   | a SignExp object returned by signeR function.                                                                                                                                                                                                  |  |
|   | surv          | a Surv object from package survival or a matrix with columns "time" and "status" (the last indicates whether 1:an event occurred or 0:there was a loss of follow up).                                                                          |  |
|   | max_instances | Maximum number of the exposure matrix instances to be analyzed. If the number of available E instances is bigger than this parameter, a subset of those will be randomly selected for analysis.                                                |  |
|   | method        | a character string indicating which approach should be used for the test. Options are "logrank" (default) or "cox" (fit a Cox proportional hazards model to data).                                                                             |  |
|   | quant         | the quantile of p-values and hazard ratios which will be used for selecting survival significant signatures. Default is 0.5, which means the median p-value and hazard ratio will be considered.                                               |  |
|   | cutoff_pvalue | threshold for p-values quantile for signatures to be considered as significant.                                                                                                                                                                |  |
|   | cutoff_hr     | threshold for hazard ratio quantile for signatures to be considered as significant.                                                                                                                                                            |  |
|   | plot_to_file  | Whether to save the plot to the file parameter. Default is FALSE.                                                                                                                                                                              |  |
|   | file          | Output file to export p-values boxplots and Kaplan-Meier curves.                                                                                                                                                                               |  |
|   | colors        | Boolean variable, if TRUE p-values boxplots of significant signatures will be colored in green, cutoff line will be colored in red and line segments showing the transformed p-value quantile used for significance evaluation will be colored |  |

#### Value

. . .

A list with the following items:

Significance boolean array with one entry for each signature, indicating whether its levels of exposure are significant to survival.

in blue. Otherwise the plot will be black & white.

 ${\tt Correlation\_quantiles}$ 

vector of correlation quantiles, with one entry for each signature.

additional parameters for test algorithm defined by the method parameter.

14 ExposureSurvModel

pvalues vector of p-values used for significance evaluation.

limits vector containing one cut value for the exposures of each signature, such that

splitting the samples according to this value leads to maximal differences in

survival among generated groups.

Groups matrix containing one line for each signature, defining a division of the sam-

ples into two groups according to their exposures, such that survival differences

between the groups are maximal.

#### **Examples**

```
# assuming signatures is the return value of signeR()
# feature vector, with one value for each sample
library(survival)
my_surv <- Surv(rnorm(30,730,100),sample(c(0:1),30,replace=TRUE))

Exp_corr <- ExposureSurvival(signatures$SignExposures, surv = my_surv)
# see also
vignette(package="signeR")</pre>
```

ExposureSurvModel

Exposure Cox model

#### **Description**

ExposureSurvModel: Given survival data, fits a multivariate Cox proportional hazards model to exposure data.

## Usage

```
## S4 method for signature 'SignExp,Surv'
ExposureSurvModel(Exposures, surv, addata,
    max_instances=200, quant=0.5, cutoff_pvalue=0.05, cutoff_hr=NA,
    plot_to_file=FALSE, file="ExposureSurvival_plot.pdf", colors=TRUE, ...)
```

#### **Arguments**

Exposures A SignExp object returned by signeR function or a matrix of exposures (with

signatures in rows and a column for each sample).

surv a Surv object from package survival or a matrix with columns "time" and "sta-

tus" (the last indicates whether 1:an event occurred or 0:there was a loss of

follow up).

addata a data frame with additional data (one sample per row) that will be used in the

Cox model along with exposure data.

max\_instances Maximum number of the exposure matrix instances to be analyzed. If the num-

ber of available E instances is bigger than this parameter, a subset of those will

be randomly selected for analysis.

quant the quantile of p-values and hazard ratios which will be used for selecting sur-

vival significant signatures. Default is 0.5, which means the median p-value and

hazard ratio will be considered.

FuzzyClustExp 15

cutoff\_pvalue threshold for p-values quantile for signatures to be considered as significant.

cutoff\_hr threshold for hazard ratio quantile for signatures to be considered as significant.

plot\_to\_file Whether to save the plot to the file parameter. Default is FALSE.

file Output file to export p-values boxplots and Kaplan-Meier curves.

colors Boolean variable, if TRUE p-values boxplots of significant signatures will be colored in green, cutoff line will be colored in red and line segments showing the transformed p-value quantile used for significance evaluation will be colored in blue. Otherwise the plot will be black & white.

... additional parameters for test algorithm defined by the method parameter.

#### Value

A list with the following items:

Significance boolean array with one entry for each signature, indicating whether its levels of

exposure are significant to survival.

Stats data frame containing hazard ratios and pvalues for signatures (one per line) on

fitted Cox models.

## **Examples**

```
# assuming signatures is the return value of signeR()
# feature vector, with one value for each sample
library(survival)
my_surv <- Surv(rnorm(30,730,100),sample(c(0:1), 30, replace = TRUE))

Exp_corr <- ExposureSurvModel(signatures$SignExposures, surv = my_surv)
# see also
vignette(package="signeR")</pre>
```

FuzzyClustExp

Fuzzy Clustering of exposure data

## **Description**

FuzzyClustExp : Performs fuzzy C-means clustering of samples, based on exposures. The number of clusters is defined by optimizing the PBMF index of obtained clustering.

## Usage

16 FuzzyClustExp

#### **Arguments**

a SignExp object returned by signeR function. signexp\_obj Maximum number of the exposure matrix instances to be analyzed. If the nummax\_instances ber of available E instances is bigger than this parameter, a subset of those will be randomly selected for analysis. Clim number of groups range, a vector with minimum and maximum accepted number of groups. The algorithm will maximize the PBMF-index within this range. method.dist used distance metric method.clust clustering method. Either "fcm", default, for fuzzy C-means or "km" for kmeans. relative Whether to normalize exposures of each sample so that they sum up to one. Default is FALSE, thus clustering samples by the absolute contributions of signatures to mutation counts. Otherwise, clustering will be based on relative contributions. Expoent used in PBMF-index Whether to save a heatmap of results to the file parameter. Default is FALSE. plot\_to\_file Output file to export a heatmap with the levels of pertinence of samples to found file groups. colored Whether plots will be in color or B&W. Default is TRUE.

#### Value

A list with the following items: Meanfuzzy=Meanfuzzy, AllFuzzy=Fuzzy[[1]], Centroids=Fuzzy[[2]]

Meanfuzzy Final clustering: mean levels of pertinence of samples to found groups.

All levels of pertinence of samples to found groups in repeated runs of the clus-

tering algorithm.

Centroids All centroids of found groups in repeated runs of the clustering algorithm.

```
# assuming signatures is the return value of signeR()
# Limits to number of groups:
cl <- c(2,4)

FuzClust <- FuzzyClustExp(signatures$SignExposures, Clim = cl)
# see also
vignette(package="signeR")</pre>
```

generateMatrix 17

generateMatrix

count matrix and opportunity matrix generators

#### **Description**

```
genCountMatrixFromVcf: generate a count matrix from a VCF file.
genCountMatrixFromMAF: generate a count matrix from an MAF file.
genOpportunityFromGenome: generate an opportunity matrix from a target regions set.
```

## Usage

```
genCountMatrixFromVcf(bsgenome, vcfobj)
genCountMatrixFromMAF(bsgenome, maf_file)
genOpportunityFromGenome(bsgenome, target_regions, nsamples=1)
```

# **Arguments**

bsgenome A BSgenome object, equivalent to the genome used for the variant call. vcfobj A VCF object. See VCF-class from the VariantAnnotation package.

maf\_file Path to a MAF file.

target\_regions A GRanges object, describing the target region analyzed by the variant caller.

nsamples Number of samples to generate the matrix, should be the same number as rows

of the count matrix.

## Value

A matrix of samples x (96 features). Each feature is an SNV change with a 3bp context.

18 HClustExp

| HClustExp | Hierarchical Clustering of exposure data |
|-----------|------------------------------------------|
|           |                                          |

# **Description**

HClustExp: Performs hierarchical clustering of samples, based on exposures.

#### Usage

## **Arguments**

signexp\_obj a SignExp object returned by signeR function. optional matrix with (median) exposures. Med\_exp Maximum number of the exposure matrix instances to be analyzed. If the num- ${\tt max\_instances}$ ber of available E instances is bigger than this parameter, a subset of those will be randomly selected for analysis. method.dist used distance metric method.hclust clustering method. use.cor used in pv.distance relative Whether to normalize exposures of each sample so that they sum up to one. Default is FALSE, thus clustering samples by the absolute contributions of signatures to mutation counts. Otherwise, clustering will be based on relative contributions. Whether to save a heatmap of results to the file parameter. Default is FALSE. plot\_to\_file file Output file to export a heatmap with the levels of pertinence of samples to found groups.

Whether plots will be in color or B&W. Default is TRUE.

## Value

colored

A pvclust object, as described in package pvclust.

```
# assuming signatures is the return value of signeR()

HClust <- HClustExp(signatures$SignExposures)

# see also
vignette(package="signeR")</pre>
```

methods 19

methods

SignExp class methods

#### **Description**

setSamples: Define sample names for a SignExp object, according to the "names" argument.

setMutations: Define mutation names for a SignExp object, according to the "mutations" argument.

Normalize: Normalize a SignExp object so that the entries of each signature sum up to one.

Reorder\_signatures: Change the order of the signatures in a SignExp object. The new signature order will be defined by the "ord" argument.

Reorder\_samples: Change samples order, according to ord parameter.

Reorder\_mutations: Change mutations order, according to ord parameter.

Average\_sign: Exports an approximation of the signatures obtained by the averages of the samples for the signature matrix P.

Median\_sign: Exports an approximation of the signatures obtained by the medians of the samples for signature matrix P.

Average\_exp: Exports an approximation of the exposures obtained by the averages of the samples for exposure matrix E.

Median\_exp: Exports an approximation of the exposures obtained by the medians of the samples for exposure matrix E.

## Usage

```
## S4 method for signature 'SignExp'
setSamples(signexp_obj, names)
## S4 method for signature 'SignExp'
setMutations(signexp_obj, mutations)
## S4 method for signature 'SignExp'
Normalize(signexp_obj)
## S4 method for signature 'SignExp, numeric'
Reorder_signatures(signexp_obj, ord)
## S4 method for signature 'SignExp, numeric'
Reorder_samples(signexp_obj, ord)
## S4 method for signature 'SignExp, numeric'
Reorder_mutations(signexp_obj, ord)
## S4 method for signature 'SignExp'
Average_sign(signexp_obj, normalize=TRUE)
## S4 method for signature 'SignExp'
Median_sign(signexp_obj, normalize=TRUE)
```

20 plots

```
## S4 method for signature 'SignExp'
Average_exp(signexp_obj, normalize=TRUE)
## S4 method for signature 'SignExp'
Median_exp(signexp_obj, normalize=TRUE)
```

#### **Arguments**

signexp\_obj a SignExp object returned by signeR function. e.g.: sig\$SignExposures

names Vector of sample names.

mutations Vector of mutations, e.g. "C>A:TCG".

normalize Whether the signatures should be normalized before extracting approximations.

Default is TRUE.

ord Vector with the new signature order.

#### Value

setSamples, setMutations, Normalize and Reorder\_\* returns a modified SignExp object. Average\_sign, Median\_sign, Average\_exp and Median\_exp return a matrix with the corresponding approximation.

# **Examples**

```
# each function needs the SignExposures object
# which is part of the result of the signeR() call
signexp <- Normalize(signatures$SignExposures)
signexp <- Reorder_signatures(signatures$SignExposures,ord=c(2,1))
matrix_p <- Median_sign(signatures$SignExposures)
# etc ...
# see also
vignette(package="signeR")</pre>
```

plots

signeR plot functions

# Description

BICboxplot: Plot the measured values of the Bayesian Information Criterion (BICs) for tested model dimensions.

Paths: Plot the convergence of the Gibbs sampler for signatures and exposures on separate charts.

SignPlot: Plot the mutational signatures in a bar chart, with error bars according to the variation of individual entries along the generated Gibbs samples.

SignHeat: Plot the mutation signatures in a heatmap.

plots 21

ExposureBarplot: Barplot of estimated exposure values, showing the contribution of the signatures to the mutation counts of each genome sample.

ExposureBoxplot: Boxplot of exposure values, showing their variation along the generated Gibbs samples.

ExposureHeat: Plot a heatmap of the exposures, along with a dendrogram of the samples grouped by exposure levels.

#### Usage

```
BICboxplot(signeRout, plot_to_file=FALSE, file="Model_selection_BICs.pdf")
## S4 method for signature 'SignExp'
Paths(signexp_obj, plot_to_file=FALSE,
    file_suffix="plot.pdf", plots_per_page=4, ...)
## S4 method for signature 'SignExp'
SignPlot(signexp_obj, plot_to_file=FALSE,
    file="Signature_plot.pdf", pal="bcr1", threshold=0, plots_per_page=4,
    gap=1, reord=NA, ...)
## S4 method for signature 'SignExp'
SignHeat(signexp_obj, plot_to_file=FALSE,
    file="Signature_heatmap.pdf", nbins=50, pal="roh", ...)
## S4 method for signature 'SignExp'
ExposureBarplot(signexp_obj, plot_to_file=FALSE,
    file="Exposure_barplot.pdf", col='tan2', threshold=0, relative=FALSE,
    title="", show_samples=NA, ...)
## S4 method for signature 'SignExp'
ExposureBoxplot(signexp_obj, plot_to_file=FALSE,
    file="Exposure_boxplot.pdf", col='tan2', threshold=0, show_samples=NA,
    plots_per_page=4, reord=NA, ...)
## S4 method for signature 'SignExp'
ExposureHeat(signexp_obj, plot_to_file=FALSE,
    file="Exposure_heatmap.pdf", nbins=50, pal="roh", distmethod="euclidean",
        clustermethod="complete", show_samples=NA, ...)
```

### Arguments

signeyn ohi

| arguexh_onl    | A SignExp object returned by signex function. e.g., signsignExposures                                                                                                                       |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| signeRout      | The list returned by the signeR function.                                                                                                                                                   |
| plot_to_file   | Whether to save the plot to the file parameter. Default is FALSE.                                                                                                                           |
| file           | Output pdf file of the plots.                                                                                                                                                               |
| pal            | $Color\ palette\ used.\ Options\ are:\ "brew","lba","bcr1",\ "bcr2","bw","rdh","roh","blh"\ or\ "bph".$                                                                                     |
| threshold      | Entries below this value will be rounded to 0. Default is 0 (all entries are kept).                                                                                                         |
| plots_per_page | How many plots in a single page, default is 4.                                                                                                                                              |
| gap            | Distance between consecutive bars on the plot.                                                                                                                                              |
| reord          | Order of signatures for plotting. Should be a permutation of 1:nsig, where nsig is the number of signatures. By default, signatures are ordered by the total exposure, in decreasing order. |

A SignExp object returned by signeR function e.g. sig\$SignExposures

22 signeR

nbins The range of signature entries is divided into this number of bins for plotting,

each bin corresponding to a different color.

file\_suffix The suffix of the output file.

col Single color name for boxplots.

distmethod Distance measure used for grouping samples. Default is "euclidean", see the

documentation of the dist function for other options.

clustermethod Agglomeration method used for grouping samples. Default is "complete", see

the documentation of the hclust function for other options.

relative Whether to normalize exposures of each sample so that they sum up to one.

Default is FALSE, thus generating a plot of absolute contributions of signatures

to mutation counts. Otherwise, relative contributions will be displayed.

title Main title added to the plot. Default is no title.

show\_samples Whether sample names will be shown in the plot. Default is NA, which leads to

sample names being displayed only when there are less than 30 samples. However, even if show\_samples=TRUE, due to display limitations sample names are

not shown if there are more than 50 samples.

..

#### Value

The plot result is exported to the current graphic device. If plot\_to\_file=TRUE, the plot is saved in the file defined by the file argument.

# **Examples**

```
# each plot function needs the SignExposures object
# which is part of the result of the signeR() call
SignPlot(signatures$SignExposures)
Paths(signatures$SignExposures)
# etc ...
# BICboxplot needs the returned list itself
BICboxplot(signatures)
# see also
vignette(package="signeR")
```

signeR signeR

# Description

Generates the signatures.

signeR 23

#### **Usage**

```
signeR(M, Mheader = TRUE, samples = "rows", Opport = NA,
   Oppheader = FALSE, P = NA, fixedP = FALSE,
   nsig = NA, nlim = c(NA, NA),
   try_all = FALSE, BICsignificance = FALSE, critical_p = 0.05,
   ap = NA, bp = NA, ae = NA, be = NA,
   lp = NA, le = NA, var.ap = 10, var.ae = 10,
   start = "lee", testing_burn = 1000, testing_eval = 1000,
   main_burn = 10000, main_eval = 2000,
   estimate_hyper = FALSE, EMit_lim=100, EM_eval = 100,
   parallelization = "multisession")
```

## **Arguments**

M mutation counts matrix of samples x features.

Mheader if M has colnames defined use TRUE, if FALSE a default order will be assumed.

samples if the samples are row-wise or column-wise in M, default is "row".

Opport context count matrix of samples x features in the target genome or region.

Oppheader if Opport has header defined.

P Previously known matrix of signatures. If provided, can be fixed along algorithm

iterations or just used as an initial value (see next parameter)

fixedP If TRUE, provided P matrix will be fixed along iterations.

nsig number of signatures, which can be provided or estimated by the algorithm.

nlim define an interval to search for the optimal number of signatures.

try\_all if TRUE, all possible values for nsig will be tested

BICsignificance

if TRUE, BICs will be considered different only if their distribution is significantly different. In case of ties in BICs comparison, signer will adopt the model with fewer signatures.

with fewer signatures.

critical\_p level of significance for BICs distribution to be considered different

ap shape parameter of the gamma distribution used to generate the entries of a matrix of rate parameters of the gamma distributions which generate signatures.

bp rate parameter of the gamma distribution used to generate the entries of a matrix

of rate parameters of the gamma distributions which generate signatures.

ae shape parameter of the gamma distribution used to generate the entries of a

matrix of rate parameters of the gamma distributions which generate exposures.

be rate parameter of the gamma distribution used to generate the entries of a matrix

of rate parameters of the gamma distributions which generate exposures.

1p parameter of the exponential distribution used to generate the entries of a matrix

of shape parameters of the gamma distributions which generate signatures.

le parameter of the exponential distribution used to generate the entries of a matrix

of shape parameters of the gamma distributions which generate exposures.

var . ap variance of the gamma distribution used to generate proposals for shape param-

eters of signatures

var.ae variance of the gamma distribution used to generate proposals for shape param-

eters of exposures

24 signeRFlow

start NMF algorithm used to generate initial values for signatures and exposures, options:

"brunet", "KL", "lee", "Frobenius", "offset", "nsNMF", "ls-nmf", "pe-nmf", "siNMF", "snmf/r"

or "snmf/l".

testing\_burn number of burning iterations of the Gibbs sampler used to estimate the number

of signatures in data. Corresponds to R0 at Algorithm 1 on signeR paper.

testing\_eval number of iterations of the Gibbs sampler used to estimate the number of signa-

tures in data. Corresponds to R2 at Algorithm 1 on signeR paper.

EM\_eval number of samples generated at each iteration of the EM algorithm. Corre-

sponds to R1 at Algorithm 1 on signeR paper.

main\_burn number of burning iterations of the final Gibbs sampler.

main\_eval number of iterations of the final Gibbs sampler.

estimate\_hyper if TRUE, algorithm estimates optimal values of ap,bp,ae,be,lp,le. Start values

can still be provided.

EMit\_lim limit of EM iterations for the estimation of hyper-hyperparameters ap,bp,ae,be,lp,le.

Default is 100. Corresponds to U at Algorithm 1 on signeR paper.

parallelization

strategy of computation parallelization, see future::plan help

#### Value

signeR output is a list with the following items:

Nsign selected number of signatures.

tested\_n array containing the numbers of signatures tested by the algorithm.

Test\_BICs list of measured BIC values when testing different numbers of signatures.

Phat Estimated signatures, median of P samples. Ehat Estimated exposures, median of E samples.

SignExposures SignExp object which contains the set of samples for the model parameters.

Bics measured BIC values on the final run of the sampler.

HyperParam evolution of estimated hyperparameters when testing different numbers of sig-

natures.

## **Examples**

vignette(package="signeR")

signeRFlow

Launch signeRFlow R Shiny web app

## **Description**

Launch signeRFlow R Shiny web app locally

## Usage

signeRFlow()

SignExp 25

# Description

Keep samples for signature and exposure matrices.

## Value

Object fields:

eSign array of signature matrix samples. Exp array of exposure matrix samples.

@sigSums Signature sums for each sample, organized by row. Normalizing factors.

@samples Genome sample IDs.
@mutations mutation names.

@normalized boolean variable, indicating whether Sign array has been normalized.

# Description

TCGA Cosmic similarities calculated by signeR.

#### Usage

```
data("tcga_similarities")
```

#### **Format**

A data frame with 112 observations on the following 80 variables.

sigs a character vector project a character vector SBS1 a numeric vector SBS10a a numeric vector

SBS10b a numeric vector

SBS10c a numeric vector

SBS10d a numeric vector

SBS11 a numeric vector

SBS12 a numeric vector

SBS13 a numeric vector

SBS14 a numeric vector

SBS15 a numeric vector

26 tcga\_similarities

| SBS16 a numeric vector  |  |
|-------------------------|--|
| SBS17a a numeric vector |  |
| SBS17b a numeric vector |  |
| SBS18 a numeric vector  |  |
| SBS19 a numeric vector  |  |
| SBS2 a numeric vector   |  |
| SBS20 a numeric vector  |  |
| SBS21 a numeric vector  |  |
| SBS22 a numeric vector  |  |
| SBS23 a numeric vector  |  |
| SBS24 a numeric vector  |  |
| SBS25 a numeric vector  |  |
| SBS26 a numeric vector  |  |
| SBS27 a numeric vector  |  |
| SBS28 a numeric vector  |  |
| SBS29 a numeric vector  |  |
| SBS3 a numeric vector   |  |
| SBS30 a numeric vector  |  |
| SBS31 a numeric vector  |  |
| SBS32 a numeric vector  |  |
| SBS33 a numeric vector  |  |
| SBS34 a numeric vector  |  |
| SBS35 a numeric vector  |  |
| SBS36 a numeric vector  |  |
| SBS37 a numeric vector  |  |
| SBS38 a numeric vector  |  |
| SBS39 a numeric vector  |  |
| SBS4 a numeric vector   |  |
| SBS40 a numeric vector  |  |
| SBS41 a numeric vector  |  |
| SBS42 a numeric vector  |  |
| SBS43 a numeric vector  |  |
| SBS44 a numeric vector  |  |
| SBS45 a numeric vector  |  |
| SBS46 a numeric vector  |  |
| SBS47 a numeric vector  |  |
| SBS48 a numeric vector  |  |
| SBS49 a numeric vector  |  |
| SBS5 a numeric vector   |  |
| SBS50 a numeric vector  |  |

tcga\_tumors 27

```
SBS51 a numeric vector
SBS52 a numeric vector
SBS53 a numeric vector
SBS54 a numeric vector
SBS55 a numeric vector
SBS56 a numeric vector
SBS57 a numeric vector
SBS58 a numeric vector
SBS59 a numeric vector
SBS6 a numeric vector
SBS60 a numeric vector
SBS7a a numeric vector
SBS7b a numeric vector
SBS7c a numeric vector
SBS7d a numeric vector
SBS8 a numeric vector
SBS84 a numeric vector
SBS85 a numeric vector
SBS86 a numeric vector
SBS87 a numeric vector
SBS88 a numeric vector
SBS89 a numeric vector
SBS9 a numeric vector
SBS90 a numeric vector
SBS91 a numeric vector
SBS92 a numeric vector
SBS93 a numeric vector
SBS94 a numeric vector
```

tcga\_tumors

TCGA tumors used on TCGA Explorer

## **Description**

List of TCGA tumors used on TCGA Explorer

## Usage

```
data("tcga_tumors")
```

#### **Format**

```
A data frame with 37 observations on the following 2 variables. 
projectID a character vector 
projectName a character vector
```

# Index

| * datasets                                             | ExposureGLM, SignExp, numeric-method                 |
|--------------------------------------------------------|------------------------------------------------------|
| <pre>cosmic_data, 3</pre>                              | (ExposureGLM), 11                                    |
| tcga_similarities, 25                                  | ExposureHeat (plots), 20                             |
| tcga_tumors, 27                                        | ExposureHeat, SignExp-method (plots), 20             |
| * package                                              | ExposureSurvival, 13                                 |
| signeR-package, 2                                      | ExposureSurvival, matrix, character-method           |
|                                                        | (ExposureSurvival), 13                               |
| Average_exp (methods), 19                              | ExposureSurvival, matrix, Surv-method                |
| Average_exp,SignExp-method(methods),19                 | (ExposureSurvival), 13                               |
| Average_sign (methods), 19                             | ExposureSurvival, matrix-method                      |
| Average_sign,SignExp-method(methods),                  | (ExposureSurvival), 13                               |
| 19                                                     | <pre>ExposureSurvival,SignExp,character-method</pre> |
| DTOL 1 ( 1 ( ) 20                                      | (ExposureSurvival), 13                               |
| BICboxplot (plots), 20                                 | ExposureSurvival, SignExp, Surv-method               |
| cosmic_data, 3                                         | (ExposureSurvival), 13                               |
| cosiiic_data, 5                                        | ExposureSurvival, SignExp-method                     |
| DiffExp, 6                                             | (ExposureSurvival), 13                               |
| DiffExp,SignExp,character-method                       | ExposureSurvModel, 14                                |
| (DiffExp), 6                                           | ExposureSurvModel, matrix, character-method          |
|                                                        | (ExposureSurvModel), 14                              |
| ExposureBarplot (plots), 20                            | ExposureSurvModel, matrix, Surv-method               |
| ExposureBarplot,SignExp-method(plots),                 | (ExposureSurvModel), 14                              |
| 20                                                     | ExposureSurvModel, matrix-method                     |
| ExposureBoxplot (plots), 20                            | (ExposureSurvModel), 14                              |
| ExposureBoxplot,SignExp-method(plots),                 | ExposureSurvModel,SignExp,character-method           |
| 20                                                     | (ExposureSurvModel), 14                              |
| ExposureClassify,7                                     | <pre>ExposureSurvModel,SignExp,Surv-method</pre>     |
| ExposureClassify,ANY,character-method                  | (ExposureSurvModel), 14                              |
| (ExposureClassify), 7                                  | ExposureSurvModel,SignExp-method                     |
| ExposureClassify,SignExp,character-method              | (ExposureSurvModel), 14                              |
| (ExposureClassify), 7                                  | , ,                                                  |
| ExposureClassifyCV,9                                   | FuzzyClustExp, 15                                    |
| ExposureClassifyCV,ANY,character-method                | <pre>FuzzyClustExp,SignExp,numeric-method</pre>      |
| (ExposureClassifyCV), 9                                | (FuzzyClustExp), 15                                  |
| <pre>ExposureClassifyCV,SignExp,character-method</pre> | FuzzyClustExp,SignExp-method                         |
| (ExposureClassifyCV), 9                                | (FuzzyClustExp), 15                                  |
| ExposureCorrelation, 10                                |                                                      |
| ExposureCorrelation,matrix,numeric-method              | <pre>genCountMatrixFromMAF (generateMatrix),</pre>   |
| (ExposureCorrelation), 10                              | 17                                                   |
| ExposureCorrelation,SignExp,numeric-method             | <pre>genCountMatrixFromVcf (generateMatrix),</pre>   |
| (ExposureCorrelation), 10                              | 17                                                   |
| ExposureGLM, 11                                        | generateMatrix, 17                                   |
| ExposureGLM,matrix,numeric-method                      | genOpportunityFromGenome                             |
| (ExposureGLM), 11                                      | (generateMatrix), 17                                 |

INDEX 29

```
HClustExp, 18
HClustExp,SignExp,numeric-method
         (HClustExp), 18
HClustExp, SignExp-method (HClustExp), 18
Median_exp (methods), 19
Median_exp, SignExp-method (methods), 19
Median_sign (methods), 19
Median_sign, SignExp-method (methods), 19
\quad \text{methods}, \\ \frac{19}{}
Normalize (methods), 19
Normalize, SignExp-method (methods), 19
Paths (plots), 20
Paths, SignExp-method (plots), 20
plots, 20
Reorder_mutations (methods), 19
Reorder_mutations, SignExp, numeric-method
         (methods), 19
Reorder_samples (methods), 19
Reorder_samples,SignExp,numeric-method
         (methods), 19
Reorder_signatures (methods), 19
{\tt Reorder\_signatures}, {\tt SignExp}, {\tt numeric-method}
         (methods), 19
setMutations (methods), 19
setMutations, SignExp-method (methods),
setSamples (methods), 19
setSamples, SignExp-method (methods), 19
signeR, 22
signeR-package, 2
signeRFlow, 24
SignExp, 25
SignExp-class (SignExp), 25
SignHeat (plots), 20
{\tt SignHeat}, {\tt SignExp-method}\, ({\tt plots}), \, \underline{20}
SignPlot (plots), 20
SignPlot, SignExp-method (plots), 20
tcga_similarities, 25
tcga_tumors, 27
```