
Package ‘kebabs’
November 15, 2024

Type Package

Title Kernel-Based Analysis of Biological Sequences

Version 1.40.0

Date 2024-04-25

Author Johannes Palme [aut], Ulrich Bodenhofer [aut,cre]

Maintainer Ulrich Bodenhofer <ulrich@bodenhofer.com>

Description The package provides functionality for kernel-based analysis of
DNA, RNA, and amino acid sequences via SVM-based methods. As core
functionality, kebabs implements following sequence kernels:
spectrum kernel, mismatch kernel, gappy pair kernel, and
motif kernel. Apart from an efficient implementation of standard
position-independent functionality, the kernels are extended in a
novel way to take the position of patterns into account for the
similarity measure. Because of the flexibility of the kernel
formulation, other kernels like the weighted degree kernel or
the shifted weighted degree kernel with constant weighting of
positions are included as special cases. An annotation-specific
variant of the kernels uses annotation information placed along
the sequence together with the patterns in the sequence.
The package allows for the generation of a kernel matrix or an
explicit feature representation in dense or sparse format for all
available kernels which can be used with methods implemented in
other R packages. With focus on SVM-based methods, kebabs
provides a framework which simplifies the usage of existing
SVM implementations in kernlab, e1071, and LiblineaR. Binary and
multi-class classification as well as regression tasks can be used
in a unified way without having to deal with the different
functions, parameters, and formats of the selected SVM. As support
for choosing hyperparameters, the package provides cross
validation - including grouped cross validation, grid search and
model selection functions. For easier biological interpretation of
the results, the package computes feature weights for all SVMs and
prediction profiles which show the contribution of individual
sequence positions to the prediction result and indicate the
relevance of sequence sections for the learning result and the
underlying biological functions.

URL https://github.com/UBod/kebabs

License GPL (>= 2.1)

1

https://github.com/UBod/kebabs

2 Contents

Collate AllClasses.R AllGenerics.R access-methods.R svmModel.R
kebabs.R kebabsData.R runtimeMessage.R parameters.R
sequenceKernel.R annotationSpecificKernel.R
positionDependentKernel.R spectrum.R mismatch.R gappyPair.R
motif.R explicitRepresentation.R coerce-methods.R
featureWeights.R heatmap-methods.R kbsvm-methods.R
performCrossValidation-methods.R gridSearch.R modelSelection.R
trainsvm-methods.R predictsvm-methods.R predict-methods.R
predictionProfile.R plot-methods.R kebabsDemo.R show-methods.R
symmetricPair.R svm.R utils.R zzz.R

Depends R (>= 3.3.0), Biostrings (>= 2.35.5), kernlab

Imports methods, stats, Rcpp (>= 0.11.2), Matrix (>= 1.5-0), XVector
(>= 0.7.3), S4Vectors (>= 0.27.3), e1071, LiblineaR, graphics,
grDevices, utils, apcluster

LinkingTo IRanges, XVector, Biostrings, Rcpp, S4Vectors

Suggests SparseM, Biobase, BiocGenerics, knitr

VignetteBuilder knitr

biocViews SupportVectorMachine, Classification, Clustering, Regression

NeedsCompilation yes

git_url https://git.bioconductor.org/packages/kebabs

git_branch RELEASE_3_20

git_last_commit 43a1703

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2024-11-14

Contents
BioVector . 3
BioVector-class . 6
computeROCandAUC . 7
ControlInformation-class . 8
CrossValidationResult-class . 9
CrossValidationResultAccessors . 10
evaluatePrediction . 11
ExplicitRepresentation . 13
ExplicitRepresentationAccessors . 14
gappyPairKernel . 15
GappyPairKernel-class . 19
genRandBioSeqs . 20
getExRep . 21
getFeatureWeights . 24
getPredictionProfile,BioVector-method . 27
getPredProfMixture,BioVector-method . 30
heatmap,PredictionProfile,missing-method . 32
KBModel-class . 35
KBModelAccessors . 36
kbsvm,BioVector-method . 37

BioVector 3

kebabsCollectInfo . 46
kebabsData . 47
kebabsDemo . 48
KernelMatrix-class . 50
KernelMatrixAccessors . 51
linearKernel . 52
linWeight . 54
mismatchKernel . 59
MismatchKernel-class . 61
ModelSelectionResult-class . 62
ModelSelectionResultAccessors . 63
motifKernel . 64
MotifKernel-class . 67
performCrossValidation,KernelMatrix-method . 68
performGridSearch . 72
performModelSelection . 77
plot,PredictionProfile,missing-method . 79
predict,KBModel-method . 83
PredictionProfile-class . 87
PredictionProfileAccessors . 87
predictSVM . 89
ROCData-class . 90
ROCDataAccessors . 91
seqKernelAsChar . 92
SequenceKernel-class . 95
show.BioVector . 96
showAnnotatedSeq . 98
spectrumKernel . 102
SpectrumKernel-class . 105
SVMInformation-class . 106
symmetricPairKernel . 107
SymmetricPairKernel-class . 109

Index 110

BioVector DNAVector, RNAVector, AAVector Objects and BioVector Class

Description

Create an object containing a set of DNA-, RNA- or amino acid sequences

Usage

Constructors:

RNAVector(x = character())

AAVector(x = character())

Accessor-like methods: see below

4 BioVector

S4 method for signature 'BioVector,index,missing,ANY'
x[i]

S4 method for signature 'BioVector'
as.character(x, use.names = TRUE)

Arguments

x character vector containing a set of sequences as uppercase characters or in
mixed uppercase/lowercase form.

i numeric vector with indicies or character with element names

use.names when set to TRUE the names are preserved

Details

The class DNAVector is used for storing DNA sequences, RNAVector for RNA sequences and
AAVector for amino acid sequences. The class BioVector is derived from the R base type character
representing a vector of character strings. It is an abstract class which can not be instantiated.
BioVector is the parent class for DNAVector, RNAVector and AAVector. For the three derived
classes identically named functions exist which are constructors. It should be noted that the con-
structors only wrap the sequence data into a class without copying or recoding the data.

The functions provided for DNAVector, RNAVector and AAVector classes are only a very small sub-
set compared to those of XStringSet but are designed along their counterparts from the Biostrings
package. Assignment of metadata and element metadata via mcols is supported for the DNAVector,
RNAVector and AAVector objects similar to objects of XStringSet derived classes (for details on
metadata assignment see annotationMetadata and positionMetadata).

In contrast to XStringSet the BioVector derived classes also support the storage of lowercase
characters. This can be relevant for repeat regions which are often coded in lowercase charac-
ters. During the creation of XStringSet derived classes the lowercase characters are converted to
uppercase automatically and the information about repeat regions is lost. For BioVector derived
classes the user can specify during creation of a sequence kernel object whether lowercase charac-
ters should be included as uppercase characters or whether repeat regions should be ignored during
sequence analysis. In this way it is possible to perform both types of analysis on the same set of
sequences through defining one kernel object which accepts lowercase characters and another one
which ignores them.

Value

constructors DNAVector, RNAVector, AAVector return a sequence set of identical class name

Accessor-like methods

In the code snippets below, x is a BioVector.

length(x) gives the number of sequences in x.

width(x) provides vector of integer values with the number of bases/amino acids for each se-
quence in the set.

names(x) provides character vector of sample names.

BioVector 5

Subsetting and concatination

In the code snippets below, x is a BioVector.

x[i] returns a BioVector object that only contains the samples selected with the subsetting pa-
rameter i. This parameter can be a numeric vector with indices or a character vector which is
matched against the names of x. Element related metadata is subsetted accordingly if avail-
able.

c(x, ...) returns a sequence set that is a concatination of the given sequence sets.

Coercion methods

In the code snippets below, x is a BioVector.

as.character(x, use.names=TRUE) returns the sequence set as named or unnamed character
vector dependent on the use.names parameter.

Note

Sequence data can be processed by KeBABS in XStringSet and BioVector based format. Within Ke-
BABS except for treatment of lowercase characters both formats are equivalent. It is recommended
to use XStringSet based formats whenever the support of lowercase characters is not of inter-
est because these classes provide in general much richer functionality than the BioVector classes.
String kernels provided in the kernlab package (see stringdot) do not support XStringSet derived
objects. The usage of these kernels is possible in KeBABS with sequence data in BioVector based
format.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

metadata, elementMetadata, XStringSet, DNAStringSet, RNAStringSet, AAStringSet

Examples

in general DNAStringSet should be prefered as described above
create DNAStringSet object for a set of sequences
x <- DNAStringSet(c("AACCGCGATTATCGatatatatatatatatTGGAAGCTAGGACTA",

"GACTTACCCgagagagagagagaCATGAGAGGGAAGCTAGTA"))
assign names to the sequences
names(x) <- c("Sample1", "Sample2")

to show the different handling of lowercase characters
create DNAVector object for the same set of sequences and assign names
xv <- DNAVector(c("AACCGCGATTATCGatatatatatatatatTGGAAGCTAGGACTA",

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

6 BioVector-class

"GACTTACCCgagagagagagagaCATGAGAGGGAAGCTAGTA"))
names(xv) <- c("Sample1", "Sample2")

show DNAStringSet object - lowercase characters were translated
x
in the DNAVector object lowercase characters are unmodified
their handling can be defined at the level of the sequence kernel
xv

show number of the sequences in the set and their number of characters
length(xv)
width(xv)
nchar(xv)

BioVector-class BioVector, DNAVector, RNAVector and AAVector Classes

Description

BioVector, DNAVector, RNAVector and AAVector Classes

Details

This class is the parent class for representing sets of biological sequences with support of lower-
case characters. The derived classes DNAVector, RNAVector and AAVector hold DNA-, RNA- or
AA-sequences which can contain also lowercase characters. In many cases repeat regions are coded
as lowercase characters and with the BioVector based classes sequence analysis with and without
repeat regions can be performed from the same sequence set. Whenever lowercase is not needed
please use the XStringSet based classes as they provide much richer functionality. The class
BioVector is derived from "character" and holds the sequence information as character vector. In-
terfaces for the small set of functions needed in KeBABS are designed consistent with XStringSet.

Instances of the DNAVector class are used for representing sets of DNA sequences.

Instances of the RNAVector class are used for representing sets of RNA sequences.

Instances of the AAVector class are used for representing sets of amino acid sequences.

Slots

NAMES sequence names

elementMetadata element metadata, which is applicable per element and holds a DataFrame with
one entry per sequence in each column. KeBABS uses the column names "annotation" and
"offset".

metadata metadata applicable for the entire sequence set as list. KeBABS stores the annotation
character set as list element named "annotationCharset".

Author(s)

Johannes Palme

computeROCandAUC 7

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

computeROCandAUC Compute Receiver Operating Characteristic And Area Under The
Curve

Description

Compute the receiver operating characteristic (ROC) and area under the ROC curve (AUC) as per-
formance measure for binary classification

Usage

computeROCandAUC(prediction, labels, allLabels = NULL)

Arguments

prediction prediction results in the form of decision values as returned by predict for
predictionType="decision".

labels label vector of same length as parameter ’prediction’.

allLabels vector containing all occuring labels once. This parameter is required only if the
labels parameter is not a factor. Default=NULL

Details

For binary classfication this function computes the receiver operating curve (ROC) and the area
under the ROC curve (AUC).

Value

On successful completion the function returns an object of class ROCData containing the AUC, a
numeric vector of TPR values and a numeric vector containing the FPR values. If the ROC and
AUC cannot be computed because of missing positive or negative samples the function returns 3
NA values.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176
https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

8 ControlInformation-class

See Also

predict, ROCData

Examples

load transcription factor binding site data
data(TFBS)
enhancerFB
select 70% of the samples for training and the rest for test
train <- sample(1:length(enhancerFB), length(enhancerFB) * 0.7)
test <- c(1:length(enhancerFB))[-train]
create the kernel object for gappy pair kernel with normalization
gappy <- gappyPairKernel(k=1, m=3)
show details of kernel object
gappy

run training with explicit representation
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=gappy,

pkg="LiblineaR", svm="C-svc", cost=80, explicit="yes",
featureWeights="no")

predict the test sequences
pred <- predict(model, enhancerFB[test])
print prediction performance
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB))

compute ROC and AUC
preddec <- predict(model, enhancerFB[test], predictionType="decision")
rocdata <- computeROCandAUC(preddec, yFB[test], allLabels=unique(yFB))

show AUC value
rocdata

Not run:
plot ROC
plot(rocdata)

End(Not run)

ControlInformation-class

KeBABS Control Information Class

Description

KeBABS Control Information Class

Details

Instances of this class store control information for the KeBABS meta-SVM.

CrossValidationResult-class 9

Slots

classification indicator for classification task

multiclassType type of multiclass SVM

featureWeights feature weights control information

selMethod selected processing method

onlyDense indicator that only dense processing can be performed

sparse indicator for sparse processing

runtimeWarning indicator for runtime warning

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

CrossValidationResult-class

Cross Validation Result Class

Description

Cross Validation Result Class

Details

Instances of this class store the result of cross validation.

Slots

cross number of folds for cross validation

noCross number of CV runs

groupBy group assignment of samples

perfParameters collected performance parameters

outerCV flag indicating outer CV

folds folds used in CV

cvError cross validation error

foldErrors fold errors

noSV number of support vectors

ACC cross validation accuracy

BACC cross validation balanced accuracy

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

10 CrossValidationResultAccessors

MCC cross validation Matthews correlation coefficient

AUC cross validation area under the ROC curve

foldACC fold accuracy

foldBACC fold balanced accuracy

foldMCC fold Matthews correlation coefficient

foldAUC fold area under the ROC curve

sumAlphas sum of alphas

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

CrossValidationResultAccessors

CrossValidationResult Accessors

Description

CrossValidationResult Accessors

Usage

S4 method for signature 'CrossValidationResult'
folds(object)

Arguments

object a cross validation result object (can be extracted from KeBABS model with
accessor cvResult)

Value

folds: returns the folds used in CV
performance: returns a list with the performance values

Accessor-like methods

folds returns the CV folds.

performance returns the collected performance parameters.

Author(s)

Johannes Palme

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

evaluatePrediction 11

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

Examples

create kernel object for normalized spectrum kernel
specK5 <- spectrumKernel(k=5)
Not run:
load data
data(TFBS)

perform training - feature weights are computed by default
model <- kbsvm(enhancerFB, yFB, specK5, pkg="LiblineaR",

svm="C-svc", cross=10, cost=15, perfParameters="ALL")

show model selection result
cvResult(model)

extract fold AUC
performance(cvResult(model))$foldAUC

End(Not run)

evaluatePrediction Evaluate Prediction

Description

Evaluate performance results of prediction on a testset based on given labels for binary classification

Usage

evaluatePrediction(prediction, label, allLabels = NULL, decValues = NULL,
print = TRUE, confmatrix = TRUE, numPrecision = 3,
numPosNegTrainSamples = numeric(0))

Arguments

prediction prediction results as returned by predict for predictionType="response".

label label vector of same length as parameter ’prediction’.

allLabels vector containing all occuring labels once. This parameter is required only if the
label vector is numeric. Default=NULL

decValues numeric vector containing decision values for the predictions as returned by
the predict method with predictionType set to decision. This parameter is
needed for the determination of the AUC value which is currently only supported
for binary classification. Default=NULL

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

12 evaluatePrediction

print This parameter indicates whether performance values should be printed or re-
turned as data frame without printing (for details see below). Default=TRUE

confmatrix When set to TRUE a confusion matrix is printed. The rows correspond to pre-
dictions, the columns to the true labels. Default=TRUE

numPrecision minimum number of digits to the right of the decimal point. Values between 0
and 20 are allowed. Default=3

numPosNegTrainSamples

optional integer vector with two values giving the number of positive and nega-
tive training samples. When this parameter is set the balancedness of the training
set is reported. Default=numeric(0)

Details

For binary classfication this function computes the performance measures accuracy, balanced accu-
racy, sensitivity, specificity, precision and the Matthews Correlation Coefficient(MCC). If decision
values are passed in the parameter decValues the function additionally determines the AUC. When
the number of positive and negative training samples is passed to the function it also shows the
balancedness of the training set. The performance results are either printed by the routine directly
or returned in a data frame. The columns of the data frame are:

column name performance measure
——————– ————–
TP true positive
FP false positive
FN false negative
TN true negative
ACC accuracy
BAL_ACC balanced accuracy
SENS sensitivity
SPEC specificity
PREC precision
MAT_CC Matthews correlation coefficient
AUC area under ROC curve
PBAL prediction balancedness (fraction of positive samples)
TBAL training balancedness (fraction of positive samples)

Value

When the parameter ’print’ is set to FALSE the function returns a data frame containing the predic-
tion performance values (for details see above).

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

ExplicitRepresentation 13

See Also

predict, kbsvm

Examples

set seed for random generator, included here only to make results
reproducable for this example
set.seed(456)
load transcription factor binding site data
data(TFBS)
enhancerFB
select 70% of the samples for training and the rest for test
train <- sample(1:length(enhancerFB), length(enhancerFB) * 0.7)
test <- c(1:length(enhancerFB))[-train]
create the kernel object for gappy pair kernel with normalization
gappy <- gappyPairKernel(k=1, m=3)
show details of kernel object
gappy

run training with explicit representation
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=gappy,

pkg="LiblineaR", svm="C-svc", cost=80, explicit="yes",
featureWeights="no")

predict the test sequences
pred <- predict(model, enhancerFB[test])

print prediction performance
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB))

Not run:
print prediction performance including AUC
additionally determine decision values
preddec <- predict(model, enhancerFB[test], predictionType="decision")
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB),

decValues=preddec)

print prediction performance including training set balance
trainPosNeg <- c(length(which(yFB[train] == 1)),

length(which(yFB[train] == -1)))
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB),

numPosNegTrainSamples=trainPosNeg)

or get prediction performance as data frame
perf <- evaluatePrediction(pred, yFB[test], allLabels=unique(yFB),

print=FALSE)

show performance values in data frame
perf

End(Not run)

ExplicitRepresentation

Explicit Representation Dense and Sparse Classes

14 ExplicitRepresentationAccessors

Description

Explicit Representation Dense and Sparse Classes

Details

In KeBABS this class is the virtual parent class for explicit representations generated from a set
of biological sequences for a given kernel. The derived classes ExplicitRepresentationDense
and ExplicitRepresentationSparse are meant to hold explicit representations in dense or sparse
format. The kernel used to generate the explicit representation is stored together with the data.

Instances of this class are used for storing explicit representations in dense matrix format. This class
is derived from ExplicitRepresentation.

Instances of this class are used for storing explicit representations in sparse dgRMatrix format. This
class is derived from ExplicitRepresentation.

Slots

usedKernel kernel used for generating the explicit representation

quadratic boolean indicating a quadratic explicit representation

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

ExplicitRepresentationAccessors

ExplicitRepresentation Accessors

Description

ExplicitRepresentation Accessors

Usage

S4 methods for signature 'ExplicitRepresentation'
x[i,j]

further methods see below

S4 method for signature 'matrix,dgRMatrix'
x %*% y

S4 method for signature 'dgRMatrix,numeric'
x %*% y

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

gappyPairKernel 15

Arguments

x an explicit representation in dense or sparse format

i integer vector or character vector with a subset of the sample indices or names

y in the first case and explicit representation and x is a matrix, for the second case
a numeric matrix and x is an explicit representation

j integer vector or character vector with a subset of the feature indices or names

Value

see details above

Accessor-like methods

x[i,] returns a KernelMatrix object that only contains the rows selected with the subsetting
parameter i. This parameter can be a numeric vector with indices or a character vector which
is matched against the names of x.

x[,j] returns a KernelMatrix object that only contains the columns selected with the subsetting
parameter j. This parameter can be a numeric vector with indices or a character vector which
is matched against the names of x.

x[i, j] returns a KernelMatrix object that only contains the rows selected with the subsetting
parameter i and columns selected by j. Both parameters can be a numeric vector with indices
or a character vector which is matched against the names of x.

Accessor-like methods

%*% this operator provides the multiplication of a dgRMatrix or a sparse explicit representation
(which is derived from dgRMatrix) with a matrix or a vector. This functionality is not available
in package Matrix for a dgRMatrix.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

gappyPairKernel Gappy Pair Kernel

Description

Create a gappy pair kernel object and the kernel matrix

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

16 gappyPairKernel

Usage

gappyPairKernel(k = 1, m = 1, r = 1, annSpec = FALSE,
distWeight = numeric(0), normalized = TRUE, exact = TRUE,
ignoreLower = TRUE, presence = FALSE, revComplement = FALSE,
mixCoef = numeric(0))

S4 method for signature 'GappyPairKernel'
getFeatureSpaceDimension(kernel, x)

Arguments

k length of the substrings (also called kmers) which are considered in pairs by
this kernel. This parameter together with parameter m (see below) defines the
size of the feature space, i.e. the total number of features considered in this
kernel is (|A|^(2*k))*(m+1), with |A| as the size of the alphabet (4 for DNA
and RNA sequences and 21 for amino acid sequences). Sequences with a total
number of characters shorter than 2 * k + m will be accepted but not all possible
patterns of the feature space can be taken into account. When multiple kernels
with different k and/or m values should be generated, e.g. for model selection
an integer vector can be specified instead of a single numeric values. In this
case a list of kernel objects with the individual values from the integer vector of
parameter k is generated as result. The processing effort for this kernel is highly
dependent on the value of k because of the additional factor 2 in the exponent for
the feature space size) and only small values of k will allow efficient processing.
Default=1

m maximal number of irrelevant positions between a pair of kmers. The value of m
must be an integer value larger than 0. For example a value of m=2 means that
zero, one or two irrelevant positions between kmer pairs are considered as valid
features. (A value of 0 corresponds to the spectrum kernel with a kmer length
of 2*k and is not allowed for the gappy pair kernel). When an integer vector
is specified a list of kernels is generated as described above for parameter k. If
multiple values are specified both for parameter k and parameter m one kernel
object is created for each of the combinations of k and m. Default=1

r exponent which must be > 0 (see details section in spectrumKernel). Default=1

annSpec boolean that indicates whether sequence annotation should be taken into account
(details see on help page for annotationMetadata). Annotation information is
only evaluated for the kmer positions of the kmer pair but not for the irrele-
vant positions in between. For the annotation specific gappy pair kernel the
total number of features increases to (|A|^(2*k))*(|a|^(2*k)*(m+1) with |A| as
the size of the sequence alphabet and |a| as the size of the annotation alphabet.
Default=FALSE

distWeight a numeric distance weight vector or a distance weighting function (details see
on help page for gaussWeight). Default=NULL

normalized generated data from this kernel will be normalized (details see below). De-
fault=TRUE

exact use exact character set for the evaluation (details see below). Default=TRUE

ignoreLower ignore lower case characters in the sequence. If the parameter is not set lower
case characters are treated like uppercase. Default=TRUE

presence if this parameter is set only the presence of a kmers will be considered, otherwise
the number of occurances of the kmer is used. Default=FALSE

gappyPairKernel 17

revComplement if this parameter is set a kmer pair and its reverse complement are treated as the
same feature. Default=FALSE

mixCoef mixing coefficients for the mixture variant of the gappy pair kernel. A numeric
vector of length k is expected for this parameter with the unused components in
the mixture set to 0. Default=numeric(0)

kernel a sequence kernel object

x one or multiple biological sequences in the form of a DNAStringSet, RNAStringSet,
AAStringSet (or as BioVector)

Details

Creation of kernel object

The function ’gappyPairKernel’ creates a kernel object for the gappy pair kernel. This kernel object
can then be used with a set of DNA-, RNA- or AA-sequences to generate a kernel matrix or an ex-
plicit representation for this kernel. The gappy pair kernel uses pairs of neighboring subsequences
of length k (kmers) with up to m irrelevant positions between the kmers. For sequences shorter
than 2*k the self similarity (i.e. the value on the main diagonal in the square kernel matrix) is 0.
The explicit representation contains only zeros for such a sample. Dependent on the learning task
it might make sense to remove such sequences from the data set as they do not contribute to the
model but still influence performance values.

For values different from 1 (=default value) parameter r leads to a transfomation of similarities
by taking each element of the similarity matrix to the power of r. If normalized=TRUE, the feature
vectors are scaled to the unit sphere before computing the similarity value for the kernel matrix. For
two samples with the feature vectors x and y the similarity is computed as:

s =
x⃗T y⃗

∥x⃗∥∥y⃗∥

For an explicit representation generated with the feature map of a normalized kernel the rows are
normalized by dividing them through their Euclidean norm. For parameter exact=TRUE the se-
quence characters are interpreted according to an exact character set. If the flag is not set ambigous
characters from the IUPAC characterset are also evaluated.

The annotation specific variant (for details see annotationMetadata) and the position dependent vari-
ants (for details see positionMetadata) either in the form of a position specific or a distance weighted
kernel are supported for the gappy pair kernel. The generation of an explicit representation is not
possible for the position dependent variants of this kernel.

Creation of kernel matrix

The kernel matrix is created with the function getKernelMatrix or via a direct call with the kernel
object as shown in the examples below.

Value

gappyPairKernel: upon successful completion, the function returns a kernel object of class GappyPairKernel.

of getDimFeatureSpace: dimension of the feature space as numeric value

Author(s)

Johannes Palme

18 gappyPairKernel

References

https://github.com/UBod/kebabs

C.C. Mahrenholz, I.G. Abfalter, U. Bodenhofer, R. Volkmer and S. Hochreiter (2011) Complex net-
works govern coiled coil oligomerization - predicting and profiling by means of a machine learning
approach. Mol. Cell. Proteomics, 10(5):M110.004994. DOI: doi:10.1074/mcp.M110.004994.

U. Bodenhofer, K. Schwarzbauer, M. Ionescu, and S. Hochreiter (2009) Modelling position speci-
ficity in sequence kernels by fuzzy equivalence relations. Proc. Joint 13th IFSA World Congress
and 6th EUSFLAT Conference, pp. 1376-1381, Lisbon.

P. Kuksa, P.-H. Huang and V. Pavlovic (2008) Fast Protein Homology and Fold Detection with
Sparse Spatial Sample Kernels. Proc. 8th Int. Workshop on Data Mining in Bioinformatics, pp.
29-37.

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

getKernelMatrix, getExRep, kernelParameters-method, spectrumKernel, mismatchKernel,
motifKernel, GappyPairKernel

Examples

instead of user provided sequences in XStringSet format
for this example a set of DNA sequences is created
RNA- or AA-sequences can be used as well with the gappy pair kernel
dnaseqs <- DNAStringSet(c("AGACTTAAGGGACCTGGTCACCACGCTCGGTGAGGGGGACGGGGTGT",

"ATAAAGGTTGCAGACATCATGTCCTTTTTGTCCCTAATTATTTCAGC",
"CAGGAATCAGCACAGGCAGGGGCACGGCATCCCAAGACATCTGGGCC",
"GGACATATACCCACCGTTACGTGTCATACAGGATAGTTCCACTGCCC",
"ATAAAGGTTGCAGACATCATGTCCTTTTTGTCCCTAATTATTTCAGC"))

names(dnaseqs) <- paste("S", 1:length(dnaseqs), sep="")

create the kernel object for dimer pairs with up to ten irrelevant
position between the kmers of the pair without normalization
gappy <- gappyPairKernel(k=2, m=10, normalized=FALSE)
show details of kernel object
gappy

generate the kernel matrix with the kernel object
km <- gappy(dnaseqs)
dim(km)
km[1:5,1:5]

alternative way to generate the kernel matrix
km <- getKernelMatrix(gappy, dnaseqs)
km[1:5,1:5]

Not run:
plot heatmap of the kernel matrix
heatmap(km, symm=TRUE)

https://github.com/UBod/kebabs
https://doi.org/10.1074/mcp.M110.004994
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

GappyPairKernel-class 19

End(Not run)

GappyPairKernel-class Gappy Pair Kernel Class

Description

Gappy Pair Kernel Class

Details

Instances of this class represent a kernel object for the gappy pair kernel. The kernel considers
adjacent pairs of kmers with up to m irrelevant characters between the pair. The class is derived
from SequenceKernel.

Slots

k length of the substrings considered by the kernel

m maximum number of irrelevant character between two kmers

r exponent (for details see gappyPairKernel)

annSpec when set the kernel evaluates annotation information

distWeight distance weighting function or vector

normalized data generated with this kernel object is normalized

exact use exact character set for evaluation

ignoreLower ignore lower case characters in the sequence

presence consider only the presence of kmers not their counts

revComplement consider a kmer and its reverse complement as the same feature

mixCoef mixing coefficients for mixture kernel

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

20 genRandBioSeqs

genRandBioSeqs Generate Random Biological Sequences

Description

Generate biological sequences with uniform random distribution of alphabet characters.

Usage

genRandBioSeqs(seqType = c("DNA", "RNA", "AA"), numSequences, seqLength,
biostring = TRUE, seed)

Arguments

seqType defines the type of sequence as DNA, RNA or AA and the underlying alphabet.
Default="DNA"

numSequences single numeric value which specifies the number of sequences that should be
generated.

seqLength either a single numeric value or a numeric vector of length ’numSequences’
which gives the length of the sequences to be generated.

biostring if TRUE the sequences will be generated in XStringSet format otherwise as BioVec-
tor derived class. Default=TRUE

seed when present the random generator will be seeded with the value passed in this
parameter

Details

The function generates a set of sequences with uniform distribution of alphabet characters and
returns it as XStringSet or BioVector dependent on the parameter biostring.

Value

When the parameter ’biostring’ is set to FALSE the function returns a XStringSet derived class
otherwise a BioVector derived class.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

getExRep 21

Examples

generate a set of AA sequences of fixed length as AAStringSet
aaseqs <- genRandBioSeqs("AA", 100, 1000, biostring=TRUE)

show AA sequence set
aaseqs

Not run:
generate a set of "DNA" sequences as DNAStringSet with uniformly
distributed lengths between 1500 and 3000 bases
seqLength <- runif(300, min=1500, max=3500)
dnaseqs <- genRandBioSeqs("DNA", 100, seqLength, biostring=TRUE)

show DNA sequence set
dnaseqs

End(Not run)

getExRep Explict Representation

Description

Create an explicit representation

Usage

getExRep(x, kernel = spectrumKernel(), sparse = TRUE,
zeroFeatures = FALSE, features = NULL, useRowNames = TRUE,
useColNames = TRUE, selx = NULL)

getExRepQuadratic(exRepLin, useRowNames = TRUE, useColNames = TRUE,
zeroFeatures = FALSE)

Arguments

x one or multiple biological sequences in the form of a DNAStringSet, RNAStringSet,
AAStringSet (or as BioVector)

kernel a sequence kernel object. The feature map of this kernel object is used to gener-
ate the explicit representation.

sparse boolean that indicates whether a sparse or dense explicit representation should
be generated. Default=TRUE

zeroFeatures indicates whether columns with zero feature counts across all samples should be
included in the explicit representation. (see below) Default=FALSE

features feature subset of the specified kernel in the form of a character vector. When a
feature subset is passed to the function all other features in the feature space are
not considered for the explicit representation. (see below)

useRowNames if this parameter is set the sample names will be set as row names if available in
the provided sequence set. Default=TRUE

22 getExRep

useColNames if this parameter is set the features will be set as column names in the explicit
representation. Default=TRUE

selx subset of indices into x. When this parameter is present the explicit representa-
tion is generated for the specified subset of samples only. default=NULL

exRepLin a linear explicit representation

Details

Creation of an explicit representation

The function ’getExRep’ creates an explicit representation of the given sequence set using the fea-
ture map of the specified kernel. It contains the feature counts in a matrix format. The rows of the
matrix represent the samples, the columns the features. For a dense explicit representation of class
ExplicitRepresentationDense the count data is stored in a dense matrix. To allow efficient stor-
age all features that do not occur in the sequence set are removed from the explicit representation by
default. When the parameter zeroFeatures is set to TRUE these features are also included resulting
an explicit representation which contains the full feature space. For feature spaces larger than one
million features the inclusion of zero features is not possible.

In case of large feature spaces a sparse explicit representation of class ExplicitRepresentationSparse
is much more efficient by storing the count data as dgRMatrix from package Matrix). The class
ExplicitRepresentationSparse is derived from dgRMatrix. As zero features are not stored in
a sparse matrix the flag zeroFeatures only controls whether the column names of features not
occuring in the sequences are included or not.

Both the dense and the sparse explicit representation also contain the kernel object which was used
for it’s creation. For an explicit representation without zero features column names are mandatory.
An explicit representation can be created for position independent and annotation specific kernel
variants (for details see annotationMetadata). In annotation specific kernels the annotation charac-
ters are included as postfix in the features. For kernels with normalization the explicit representation
is normalized resulting in row vectors normalized to the unit sphere. For feature subsets used with
normalized kernels all features of the feature space are used in the normalization.

Usage of explicit representations

Learning with linear SVMs (e.g. ksvmin package kernlab or svm in package e1071) can be per-
formed either through passing a kernel matrix of similarity values or an explicit representation and a
linear kernel to the SVM. The SVMs in package kernlab support a dense explicit representation or
kernel matrix as data representations. The SVMs in packages e1071) and LiblineaR support dense
or sparse explicit representations. In many cases there can be considerable performance differences
between the two variants of passing data to the SVM. And especially for larger feature spaces the
sparse explicit representation not only brings higher memory efficiency but also leads to drastically
improved runtimes during training and prediction. Starting with kebabs version 1.2.0 kernel matrix
support is also available for package e1071 via the dense LIBSVM implementation integrated in
package kebabs.

In general all of the complexity of converting the sequences with a specific kernel to an explicit
representation or a kernel matrix and adapting the formats and parameters to the specific SVM is
hidden within the KeBABS training and predict methods (see kbsvm, predict) and the user can
concentrate on the actual data analysis task. During training via kbsvm the parameter explicit
controls the training via kernel matrix or explicit representation and the parameter explicitType
determines whether a dense or sparse explicit representation is used. Manual generation of explicit

getExRep 23

representations is only necessary for usage with other learners or analysis methods not supported
by KeBABS.

Quadratic explicit representation

The package LiblineaR only provides linear SVMs which are tuned for efficient processing of
larger feature spaces and sample numbers. To allow the use of a quadratic kernel on these SVMs
a quadratic explicit representation can be generated from the linear explicit representation. It con-
tains counts for feature pairs and the features combined to one pair are separated by ’_’ in the
column names of the quadratic explicit representation. Please be aware that the dimensionality for
a quadratic explicit representation increases considerably compared to the linear one. In the other
SVMs a linear explicit representation together with a quadratic kernel is used instead. In training via
kbsvm the use of a linear representation with a quadratic kernel or a quadratic explicit representation
instead is indicated through setting the parameter featureType to the value "quadratic".

Value

getExRep: upon successful completion, dependent on the flag sparse the function returns either a
dense explicit representation of class ExplicitRepresentationDense or a sparse explicit repre-
sentation of class ExplicitRepresentationSparse.

getExRepQuadratic: upon successful completion, the function returns a quadratic explicit represen-
tation

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

ExplicitRepresentationDense, ExplicitRepresentationSparse, getKernelMatrix, kernelParameters-method,
SpectrumKernel, mismatchKernel, gappyPairKernel, motifKernel

Examples

instead of user provided sequences in XStringSet format
for this example a set of DNA sequences is created
RNA- or AA-sequences can be used as well with the spectrum kernel
dnaseqs <- DNAStringSet(c("AGACTTAAGGGACCTGGACACCACACTCAGCTAGGGGGACTGGGAGC",

"ATAAAGGGAGCAGACATCATGACCTTTTTGACCCTAATTATTTCAGC",
"CAGGAATCAGCACAGGCAGGGGCACTGCATCCCAAGACATCTGGGCC",
"GGACATATACCCACCCTTACCTGCCATACAGGATAGGGCCACTGCCC",
"ATAAAGGATGCAGACATCATGGCCTTTTTGACCCTAATTATTTCAGC"))

names(dnaseqs) <- paste("S", 1:length(dnaseqs), sep="")

create the kernel object for dimers with normalization
speck <- spectrumKernel(k=2)

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

24 getFeatureWeights

show details of kernel object
speck

generate the dense explicit representation for the kernel
erd <- getExRep(dnaseqs, speck, sparse=FALSE)
dim(erd)
erd[1:5,]

generate the dense explicit representation with zero features
erd <- getExRep(dnaseqs, speck, sparse=FALSE, zeroFeatures=TRUE)
dim(erd)
erd[1:5,]

generate the sparse explicit representation for the kernel
ers <- getExRep(dnaseqs, speck)
dim(ers)
ers[1:5,]

generate the sparse explicit representation with zero features
ers <- getExRep(dnaseqs, speck, zeroFeatures=TRUE)
dim(ers)
ers[1:5,]

generate the quadratic explicit representation
erdq <- getExRepQuadratic(erd)
dim(erdq)
erdq[1:5,1:15]

Not run:
run taining and prediction with dense linear explicit representation
data(TFBS)
enhancerFB
train <- sample(1:length(enhancerFB), length(enhancerFB) * 0.7)
test <- c(1:length(enhancerFB))[-train]
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=speck,

pkg="LiblineaR", svm="C-svc", cost=10, explicit="yes",
explicitType="dense")

pred <- predict(model, x=enhancerFB[test])
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB))

run taining and prediction with sparse linear explicit representation
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=speck,

pkg="LiblineaR", svm="C-svc", cost=10, explicit="yes",
explicitType="sparse")

pred <- predict(model, x=enhancerFB[test])
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB))

End(Not run)

getFeatureWeights Feature Weights

Description

Compute Feature Weights for KeBABS Model

getFeatureWeights 25

Usage

getFeatureWeights(model, exrep = NULL, features = NULL,
weightLimit = .Machine$double.eps)

Arguments

model model object of class KBModel created by kbsvm.

exrep optional explicit representation of the support vectors from which the feature
weights should be computed. If no explicit representation is passed to the func-
tion the explicit representation is generated internally from the support vectors
stored in the model. default=NULL

features feature subset of the specified kernel in the form of a character vector. When a
feature subset is passed to the function all other features in the feature space are
not considered for the explicit representation. (see below) default=NULL

weightLimit the feature weight limit is a single numeric value and allows pruning of feature
weights. All feature weights with an absolute value below this limit are set to 0
and are not considered in the feature weights. Default=.Machine$double.eps

Details

Overview

Feature weights represent the contribution to the decision value for a single occurance of the feature
in the sequence. In this way they give a hint concerning the importance of the individual features
for a given classification or regression task. Please consider that for a pattern length larger than 1
patterns at neighboring sequence positions overlap and are no longer independent from each other.
Apart from the obvious overlapping possibility of patterns for e.g. gappy pair kernel, motif kernel
or mixture kernels multiple patterns can be relevant for a single position. Therefore feature weights
do not describe the relevance for individual features exactly.

Computation of feature weights

Feature weights can be computed automatically as part of the training (see parameter featureWeights
in method kbsvm. In this case the function getFeatureWeights is called during training automati-
cally. When this parameter is not set during training computation of feature weights after training is
possible with the function getFeatureWeights. The function also supports pruning of feature weights
(see parameter weightLimit allowing to test different prunings without retraining.

Usage of feature weights

Feature weights are used during prediction to speed up the prediction process. Prediction via
feature weights is performed in KeBABS when feature weights are available in the model (see
featureWeights). When feature weights are not available or for multiclass prediction KeBABS
defaults to the native prediction in the SVM used during training.

Feature weights are also used during generation of prediction profiles (see getPredictionProfile).
In the feature weights the general relevance of features is reflected. When generating prediction pro-
files for a given set of sequences from the feature weights the relevance of single sequence positions
is shown for the individual sequences according to the given learning task.

Feature weights for position dependent kernels

26 getFeatureWeights

For position dependent kernels the generation of feature weights is not possible during training.
In this case the featureWeights slot in the model contains a data representation that allows simple
computation of feature weights during prediction or during generation of prediction profiles.

Value

Upon successful completion, the function returns the feature weights as numeric vector. For quadratic
kernels a matrix of feature weights is returned giving the feature weights for pairs of features. In
case of multiclass the function returns the feature weights for the pairwise SVMs as list of numeric
vectors (or matrices for quadratic kernels).

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

kbsvm, predict, getPredictionProfile featureWeights, KBModel

Examples

standard method to create feature weights automatically during training
model <- kbsvm(.... , featureWeights="yes",)
this example describes the case where feature weights were not created
during training but should be added later to the model

load example sequences and select a small set of sequences
to speed up training for demonstration purpose
data(TFBS)
create sample indices of training and test subset
train <- sample(1:length(yFB), 200)
test <- c(1:length(yFB))[-train]
determin all labels
allLables <- unique(yFB)

create a kernel object
gappyK1M4 <- gappyPairKernel(k=1, m=4)

model is trainded with creation of feature weights
model <- kbsvm(enhancerFB[train], yFB[train], gappyK1M4,

pkg="LiblineaR", svm="C-svc", cost=20)

feature weights included in model
featureWeights(model)

Not run:
model is originally trainded without creation of feature weights

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

getPredictionProfile,BioVector-method 27

model <- kbsvm(enhancerFB[train], yFB[train], gappyK1M4,
pkg="LiblineaR", svm="C-svc", cost=20, featureWeights="no")

no feature weights included in model
featureWeights(model)

later after training add feature weights and model offset of model to
KeBABS model
featureWeights(model) <- getFeatureWeights(model)
modelOffset(model) <- getSVMSlotValue("b", model)

show a part of the feature weights and the model offset
featureWeights(model)[1:7]
modelOffset(model)

another scenario for getFeatureWeights is to test the performance
behavior of different prunings of the feature weights

show histogram of full feature weights
hist(featureWeights(model), breaks=30)

show number of features
length(featureWeights(model))

first predict with full feature weights to see how performance
when feature weights are included in the model prediction is always
performed with the feature weights
changes through pruning
pred <- predict(model, enhancerFB[test])
evaluatePrediction(pred, yFB[test], allLabels=allLables)

add feature weights with pruning to absolute values larger than 0.6
model offset was assigned above and is not impacted by pruning
featureWeights(model) <- getFeatureWeights(model, weightLimit=0.6)

show histogram of full feature weights
hist(featureWeights(model), breaks=30)

show reduced number of features
length(featureWeights(model))

now predict with pruned feature weights
pred <- predict(model, enhancerFB, sel=test)
evaluatePrediction(pred, yFB[test], allLabels=allLables)

End(Not run)

getPredictionProfile,BioVector-method

Calculation Of Predicition Profiles

Description

compute prediction profiles for a given set of biological sequences from a model trained with kbsvm

28 getPredictionProfile,BioVector-method

Usage

S4 method for signature 'BioVector'
getPredictionProfile(object, kernel, featureWeights, b,
svmIndex = 1, sel = NULL, weightLimit = .Machine$double.eps)

S4 method for signature 'XStringSet'
getPredictionProfile(object, kernel, featureWeights, b,
svmIndex = 1, sel = NULL, weightLimit = .Machine$double.eps)

S4 method for signature 'XString'
getPredictionProfile(object, kernel, featureWeights, b,
svmIndex = 1, sel = NULL, weightLimit = .Machine$double.eps)

Arguments

object a single biological sequence in the form of an DNAString, RNAString or AAString
or multiple biological sequences as DNAStringSet, RNAStringSet, AAStringSet
(or as BioVector).

kernel a sequence kernel object of class SequenceKernel.

featureWeights a feature weights matrix retrieved from a KeBABS model with the accessor
featureWeights.

b model intercept from a KeBABS model.

svmIndex integer value selecting one of the pairwise SVMs in case of pairwise multiclass
classification. Default=1

sel subset of indices into x as integer vector. When this parameter is present the
prediction profiles are computed for the specified subset of samples only. De-
fault=integer(0)

weightLimit the feature weight limit is a single numeric value and allows pruning of feature
weights. All feature weights with an absolute value below this limit are set to 0
and are not considered for the prediction profile computation. This parameter is
only relevant when feature weights are calculated in KeBABS during training.
Default=.Machine$double.eps

Details

With this method prediction profiles can be generated explicitely for a given set of sequences with a
given model represented through its feature weights and the model intercept b. A single prediction
profile shows for each position of the sequence the contribution of the patterns at this position to
the decision value. The prediciion profile also includes the kernel object used for the generation of
the profile and the seqence data.

A single profile or a pair can be plotted with method plot showing the relevance of sequence
positions for the prediction. Please consider that patterns occuring at neighboring sequence posi-
tions are not statistically independent which means that the relevance of a specific position is not
only determined by the patterns at this position but is also influenced by the neighborhood around
this position. Prediction profiles can also be generated implicitely during predction for the predicted
samples (see parameter predProfiles in predict).

getPredictionProfile,BioVector-method 29

Value

getPredictionProfile: upon successful completion, the function returns a set of prediction profiles
for the sequences as class PredictionProfile.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

C.C. Mahrenholz, I.G. Abfalter, U. Bodenhofer, R. Volkmer and S. Hochreiter (2011) Complex net-
works govern coiled coil oligomerization - predicting and profiling by means of a machine learning
approach. Mol. Cell. Proteomics, 10(5):M110.004994. DOI: doi:10.1074/mcp.M110.004994.

U. Bodenhofer, K. Schwarzbauer, M. Ionescu, and S. Hochreiter (2009). Modelling position speci-
ficity in sequence kernels by fuzzy equivalence relations. Proc. Joint 13th IFSA World Congress
and 6th EUSFLAT Conference, pp. 1376-1381, Lisbon.

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

PredictionProfile, predict, plot, featureWeights, getPredProfMixture

Examples

set random generator seed to make the results of this example
reproducable
set.seed(123)

load coiled coil data
data(CCoil)
gappya <- gappyPairKernel(k=1,m=11, annSpec=TRUE)
model <- kbsvm(x=ccseq, y=as.numeric(yCC), kernel=gappya,

pkg="e1071", svm="C-svc", cost=15)

show feature weights
featureWeights(model)[,1:5]

define two new sequences to be predicted
GCN4 <- AAStringSet(c("MKQLEDKVEELLSKNYHLENEVARLKKLV",

"MKQLEDKVEELLSKYYHTENEVARLKKLV"))
names(GCN4) <- c("GCN4wt", "GCN_N16Y,L19T")
assign annotation metadata
annCharset <- annotationCharset(ccseq)
annot <- c("abcdefgabcdefgabcdefgabcdefga",

"abcdefgabcdefgabcdefgabcdefga")
annotationMetadata(GCN4, annCharset=annCharset) <- annot

compute prediction profiles
predProf <- getPredictionProfile(GCN4, gappya,

https://github.com/UBod/kebabs
https://doi.org/10.1074/mcp.M110.004994
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

30 getPredProfMixture,BioVector-method

featureWeights(model), modelOffset(model))

show prediction profiles
predProf

plot prediction profile of first aa sequence
plot(predProf, sel=1, ylim=c(-0.4, 0.2), heptads=TRUE, annotate=TRUE)

plot prediction profile of both aa sequences
plot(predProf, sel=c(1,2), ylim=c(-0.4, 0.2), heptads=TRUE, annotate=TRUE)

prediction profiles can also be generated during prediction
when setting the parameter predProf to TRUE
plotting longer sequences to pdf is shown in the examples for the
plot function

getPredProfMixture,BioVector-method

Calculation Of Predicition Profiles for Mixture Kernels

Description

compute prediction profiles for a given set of biological sequences from a model trained with mix-
ture kernels

Usage

S4 method for signature 'BioVector'
getPredProfMixture(object, trainseqs, mixModel, kernels,
mixCoef, svmIndex = 1, sel = 1:length(object),
weightLimit = .Machine$double.eps)

S4 method for signature 'XStringSet'
getPredProfMixture(object, trainseqs, mixModel, kernels,
mixCoef, svmIndex = 1, sel = 1:length(object),
weightLimit = .Machine$double.eps)

S4 method for signature 'XString'
getPredProfMixture(object, trainseqs, mixModel, kernels,
mixCoef, svmIndex = 1, sel = 1, weightLimit = .Machine$double.eps)

Arguments

object a single biological sequence in the form of an DNAString, RNAString or AAString
or multiple biological sequences as DNAStringSet, RNAStringSet, AAStringSet
(or as BioVector).

trainseqs training sequences on which the mixture model was trained as DNAStringSet,
RNAStringSet, AAStringSet (or as BioVector).

mixModel model object of class KBModel trained with kernel mixture.

kernels a list of sequence kernel objects of class SequenceKernel. The same kernels
must be used as in training.

getPredProfMixture,BioVector-method 31

mixCoef mixing coefficients for the kernel mixture. The same mixing coefficient values
must be used as in training.

svmIndex integer value selecting one of the pairwise SVMs in case of pairwise multiclass
classification. Default=1

sel subset of indices into x as integer vector. When this parameter is present the
prediction profiles are computed for the specified subset of samples only. De-
fault=integer(0)

weightLimit the feature weight limit is a single numeric value and allows pruning of feature
weights. All feature weights with an absolute value below this limit are set to 0
and are not considered for the prediction profile computation. This parameter is
only relevant when feature weights are calculated in KeBABS during training.
Default=.Machine$double.eps

Details

With this method prediction profiles can be generated explicitely for a given set of sequences with
a model trained on a precomputed kernel matrix as mixture of multiple kernels.

Value

upon successful completion, the function returns a set of prediction profiles for the sequences as
class PredictionProfile.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

C.C. Mahrenholz, I.G. Abfalter, U. Bodenhofer, R. Volkmer and S. Hochreiter (2011) Complex net-
works govern coiled coil oligomerization - predicting and profiling by means of a machine learning
approach. Mol. Cell. Proteomics, 10(5):M110.004994. DOI: doi:10.1074/mcp.M110.004994.

U. Bodenhofer, K. Schwarzbauer, M. Ionescu, and S. Hochreiter (2009). Modelling position speci-
ficity in sequence kernels by fuzzy equivalence relations. Proc. Joint 13th IFSA World Congress
and 6th EUSFLAT Conference, pp. 1376-1381, Lisbon.

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

PredictionProfile, predict, plot, featureWeights, getPredictionProfile

https://github.com/UBod/kebabs
https://doi.org/10.1074/mcp.M110.004994
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

32 heatmap,PredictionProfile,missing-method

Examples

set random generator seed to make the results of this example
reproducable
set.seed(123)

load coiled coil data
data(CCoil)
gappya1 <- gappyPairKernel(k=1,m=11, annSpec=TRUE)
gappya2 <- gappyPairKernel(k=2,m=9, annSpec=TRUE)
kernels <- list(gappya1, gappya2)
mixCoef <- c(0.7,0.3)

precompute mixed kernel matrix
km <- as.KernelMatrix(mixCoef[1]*gappya1(ccseq) +

mixCoef[2]*gappya2(ccseq))
mixModel <- kbsvm(x=km, y=as.numeric(yCC),

pkg="e1071", svm="C-svc", cost=15)

define two new sequences to be predicted
GCN4 <- AAStringSet(c("MKQLEDKVEELLSKNYHLENEVARLKKLV",

"MKQLEDKVEELLSKYYHTENEVARLKKLV"))
names(GCN4) <- c("GCN4wt", "GCN_N16Y,L19T")
assign annotation metadata
annCharset <- annotationCharset(ccseq)
annot <- c("abcdefgabcdefgabcdefgabcdefga",

"abcdefgabcdefgabcdefgabcdefga")
annotationMetadata(GCN4, annCharset=annCharset) <- annot

compute prediction profiles
predProf <- getPredProfMixture(GCN4, ccseq, mixModel,

kernels, mixCoef)

show prediction profiles
predProf

plot prediction profile of both aa sequences
plot(predProf, sel=c(1,2), ylim=c(-0.4, 0.2), heptads=TRUE, annotate=TRUE)

heatmap,PredictionProfile,missing-method

Heatmap Methods

Description

Create a heat map of prediction profiles

Usage

S4 method for signature 'PredictionProfile,missing'
heatmap(x, Rowv = TRUE, add.expr,
margins = c(5, 5), RowSideColors = NULL,
cexRow = max(min(35/nrow(x@profiles), 1), 0.1),
cexCol = max(min(35/ncol(x@profiles), 1), 0.1), main = NULL,
dendScale = 1, barScale = 1, startPos = 1, endPos = ncol(x@profiles),
labels = NULL, windowSize = 1, ...)

heatmap,PredictionProfile,missing-method 33

Arguments

x prediction profile of class PredictionProfile.

Rowv determines the row order of the plot. When set to TRUE the profile rows are
clustered via hierarchical clustering and a row dendrogram is plotted. When
set to FALSE, NA or NULL the order is corresponds to the order of the sequences
in the profile. If this parameter has a value of random rows are ordered ran-
domly, for decision the ordering is according to decreasing decision values.
A user-defined order can be specified through a numeric vector of indices. De-
fault=TRUE

add.expr largely analogous to the standard heatmap function.

margins largely analogous to the standard heatmap function. Default=c(5,5)

RowSideColors a vector of color values specifying the colors for the side bar. Default=NULL

cexRow largely analogous to the standard heatmap function. When set to 0 the row labels
are suppressed. Default=defined dependent on number of profile rows

cexCol largely analogous to the standard heatmap function. When set to 0 the column
labels are suppressed. Default=defined dependent on number of profile columns

main largely analogous to the standard heatmap function.

dendScale factor scaling the width of the row dendrogram; values have to be larger than 0
and not larger than 2. Default=1

barScale factor scaling the width of the label color bar. Values have to be larger than 0
and not larger than 4. Default=1

startPos start sequence position. Together with the parameter endPos a subset of se-
quence positions can be selected for the heatmap. Default=1

endPos end sequence position (see also startPos). Default=maximum sequence length
in the profile.

labels a numeric vector, character vector or factor specifying the labels for the se-
quences in the profile. If this parameter is different from NULL the labels are
plotted as side bar using the colors specified in the parameter RowSideColors.
Default=NULL

windowSize numerical value specifying the window size of an optional sliding window av-
eraging of the prediction profiles. The value must be larger than 0. Even values
are changed internally to odd values by adding 1. Default=1

... additional parameters which are passed to the image method transparently.

Details

The heatmap function provides plotting of heatmaps from prediction profiles with various possi-
bilities for sample (=row) ordering (see parameter Rowv). The heatmap is shown together with an
optional color sidebar showing the labels and an optional row cluster dendrogram when hierarchical
clustering defines the row order. For long sequences the heatmap can be restricted to a subset of
positions. Additionally smoothing can be applied to the prediction profiles through sliding window
averaging. Through smoothing important regions can become better visible.

Value

Invisibly, a cluster dendrogram.

34 heatmap,PredictionProfile,missing-method

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

C.C. Mahrenholz, I.G. Abfalter, U. Bodenhofer, R. Volkmer and S. Hochreiter (2011) Complex net-
works govern coiled coil oligomerization - predicting and profiling by means of a machine learning
approach. Mol. Cell. Proteomics, 10(5):M110.004994. DOI: doi:10.1074/mcp.M110.004994.

U. Bodenhofer, K. Schwarzbauer, M. Ionescu, and S. Hochreiter (2009). Modelling position speci-
ficity in sequence kernels by fuzzy equivalence relations. Proc. Joint 13th IFSA World Congress
and 6th EUSFLAT Conference, pp. 1376-1381, Lisbon.

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

getPredictionProfile

Examples

load coiled coil data
data(CCoil)

define annotation specific gappy pair kernel
gappya <- gappyPairKernel(k=1,m=11, annSpec=TRUE)

train model
model <- kbsvm(x=ccseq, y=as.numeric(yCC), kernel=gappya,

pkg="e1071", svm="C-svc", cost=15)

generate prediction profiles
predProf <- getPredictionProfile(ccseq, gappya,

featureWeights(model), modelOffset(model))

show prediction profiles
predProf

Not run:
plot heatmap for the prediction profiles - random ordering of samples
heatmap(predProf, Rowv="random", main="Prediction Profiles", labels=yCC,
RowSideColors=c("blue", "red"), cexRow=0.15, cexCol=0.3)

plot heatmap for the prediction profiles - ordering by decision values
heatmap(predProf, Rowv="decision", main="Prediction Profiles", labels=yCC,
RowSideColors=c("blue", "red"), cexRow=0.15, cexCol=0.3)

plot heatmap for the prediction profiles - with hierarchical clustering
heatmap(predProf, Rowv=TRUE, main="Prediction Profiles", labels=yCC,
RowSideColors=c("blue", "red"), cexRow=0.15, cexCol=0.3)

https://github.com/UBod/kebabs
https://doi.org/10.1074/mcp.M110.004994
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

KBModel-class 35

End(Not run)

KBModel-class KeBABS Model Class

Description

KeBABS Model Class

Details

Instances of this class represent a model object for the KeBABS meta-SVM.

Slots

call invocation string of KeBABS meta-SVM
numSequences number of sequences used for training
sel index subset of samples used for training
y vector of target values
levels levels of target
numClasses number of classes
classNames class labels
classWeights class weights
SV support vectors
svIndex support vector indices
alphaIndex list of SVM indices per SVM
trainingFeatures feature names used in training
featureWeights feature Weights
b model offset
probA fitted logistic function parameter A
probB fitted logistic function parameter A
sigma scale of Laplacian fitted to regression residuals
cvResult cross validation result of class CrossValidationResult
modelSelResult model selection / grid search result of class ModelSelectionResult
ctlInfo KeBABS control info of class ControlInformation
svmInfo info about requested / used SVM of class SVMInformation
svmModel original model returned from SVM

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

36 KBModelAccessors

KBModelAccessors KBModel Accessors

Description

KBModel Accessors

Usage

S4 method for signature 'KBModel'
modelOffset(object)

getSVMSlotValue(paramName, model, raw = FALSE)

Arguments

object a KeBABS model
paramName unified name of an SVM model data element
model a KeBABS model
raw when set to TRUE the parameter value is delivered in exactly the way as it is

stored in the SVM specific model, when set to FALSE it is delivered in unified
format

Value

getSVMSlotValue: value of requested parameter in unified or native format dependent on parameter
raw.

Accessor-like methods

In all descriptions below, object is an object of class KBModel.

modelOffset(object) returns the model offset.
featureWeights(object) returns the feature weights.
SVindex(object) returns the support vector indices for the training samples.
cvResult(object) returns result of cross validation as object of class CrossValidationResult.
modelSelResult(object) returns result of model selection as object of class ModelSelectionResult.
svmModel(object) returns the native svm model stored within KeBABS model.
probabilityModel(object) returns the probability model stored within KeBABS model.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

kbsvm,BioVector-method 37

Examples

create kernel object for normalized spectrum kernel
specK5 <- spectrumKernel(k=5)
Not run:
load data
data(TFBS)

perform training - feature weights are computed by default
model <- kbsvm(enhancerFB, yFB, specK5, pkg="LiblineaR",

svm="C-svc", cost=15, cross=10, showProgress=TRUE)
showProgress=TRUE)

show result of validation
cvResult(model)
show feature weights
featureWeights(model)[1:5]
show model offset
modelOffset(model)

End(Not run)

kbsvm,BioVector-method

KeBABS Training Methods

Description

Train an SVM-model with a sequence kernel on biological sequences

Usage

S4 method for signature 'BioVector'
kbsvm(x, y, kernel = NULL, pkg = "auto",
svm = "C-svc", explicit = "auto", explicitType = "auto",
featureType = "linear", featureWeights = "auto",
weightLimit = .Machine$double.eps, classWeights = numeric(0), cross = 0,
noCross = 1, groupBy = NULL, nestedCross = 0, noNestedCross = 1,
perfParameters = character(0), perfObjective = "ACC", probModel = FALSE,
sel = integer(0), features = NULL, showProgress = FALSE,
showCVTimes = FALSE, runtimeWarning = TRUE,
verbose = getOption("verbose"), ...)

S4 method for signature 'XStringSet'
kbsvm(x, y, kernel = NULL, pkg = "auto",
svm = "C-svc", explicit = "auto", explicitType = "auto",
featureType = "linear", featureWeights = "auto",
weightLimit = .Machine$double.eps, classWeights = numeric(0), cross = 0,
noCross = 1, groupBy = NULL, nestedCross = 0, noNestedCross = 1,
perfParameters = character(0), perfObjective = "ACC", probModel = FALSE,
sel = integer(0), features = NULL, showProgress = FALSE,
showCVTimes = FALSE, runtimeWarning = TRUE,
verbose = getOption("verbose"), ...)

38 kbsvm,BioVector-method

S4 method for signature 'ExplicitRepresentation'
kbsvm(x, y, kernel = NULL, pkg = "auto",
svm = "C-svc", explicit = "auto", explicitType = "auto",
featureType = "linear", featureWeights = "auto",
weightLimit = .Machine$double.eps, classWeights = numeric(0), cross = 0,
noCross = 1, groupBy = NULL, nestedCross = 0, noNestedCross = 1,
perfParameters = character(0), perfObjective = "ACC", probModel = FALSE,
sel = integer(0), showProgress = FALSE, showCVTimes = FALSE,
runtimeWarning = TRUE, verbose = getOption("verbose"), ...)

S4 method for signature 'KernelMatrix'
kbsvm(x, y, kernel = NULL, pkg = "auto",
svm = "C-svc", explicit = "no", explicitType = "auto",
featureType = "linear", featureWeights = "no",
classWeights = numeric(0), cross = 0, noCross = 1, groupBy = NULL,
nestedCross = 0, noNestedCross = 1, perfParameters = character(0),
perfObjective = "ACC", probModel = FALSE, sel = integer(0),
showProgress = FALSE, showCVTimes = FALSE, runtimeWarning = TRUE,
verbose = getOption("verbose"), ...)

Arguments

x multiple biological sequences in the form of a DNAStringSet, RNAStringSet,
AAStringSet (or as BioVector). Also a precomputed kernel matrix (see getKernelMatrix
or a precomputed explicit representation (see getExRep can be used instead. If
they were precomputed with a sequence kernel this kernel should be specified
in the parameter kernel in this case.

y response vector which contains one value for each sample in ’x’. For classifi-
cation tasks this can be either a character vector, a factor or a numeric vector,
for regression tasks it must be a numeric vector. For numeric labels in binary
classification the positive class must have the larger value, for factor or charac-
ter based labels the positive label must be at the first position when sorting the
labels in descendent order according to the C locale. If the parameter sel is used
to perform training with a sample subset the response vector must have the same
length as ’sel’.

kernel a sequence kernel object or a string kernel from package kernlab. In case of
grid search or model selection a list of sequence kernel objects can be passed to
training.

pkg name of package which contains the SVM implementation to be used for train-
ing, e.g. kernlab, e1071 or LiblineaR. For gridSearch or model selection
multiple packages can be passed as character vector. (see also parameter svm
below). Default="auto"

svm name of the SVM used for the classification or regression task, e.g. "C-svc". For
gridSearch or model selection multiple SVMs can be passed as character vector.
For each entry in this character vector a corresponding entry in the character
vector for parameter pkg is required, if multiple SVMs are used in one cross
validation or model selection run.

explicit this parameter controls whether training should be performed with the kernel
matrix (see getKernelMatrix) or explicit representation (see getExRep). When
the parameter is set to "no" the kernel matrix is used, for "yes" the model is

kbsvm,BioVector-method 39

trained from the explicit representation. When set to "auto" KeBABS automati-
cally selects a variant based on runtime heuristics. For training via kernel matrix
the dense LIBSVM implementation included in package kebabs is the preferred
processing variant. Default="auto"

explicitType this parameter is only relevant when parameter ’explicit’ is different from "no".
The values "sparse" and "dense" indicate whether a sparse or dense explicit rep-
resentation should be used. When the parameter is set to "auto" KeBABS selects
a variant. Default="auto"

featureType when the parameter is set to "linear" single features areused in the analysis (with
a linear kernel matrix or a linear kernel applied to the linear explicit representa-
tion). When set to "quadratic" the analysis is based on feature pairs. For an SVM
from LiblineaR (which does not support kernels) KeBABS generates a quadratic
explicit representation. For the other SVMs a polynomial kernel of degree 2 is
used for learning via explicit representation. In the case of learning via kernel
matrix a quadratic kernel matrix (quadratic here in the sense of linear kernel
matrix with each element taken to power 2) is generated. Default="linear"

featureWeights with the values "no" and "yes" the user can control whether feature weights are
calulated as part of the training. When the parameter is set to "auto" KeBABS
selects a variant (see below). Default="auto"

weightLimit the feature weight limit is a single numeric value and allows pruning of feature
weights. All feature weights with an absolute value below this limit are set to 0
and are not considered in the model and for further predictions. This parameter
is only relevant when featureWeights are calculated in KeBABS during training.
Default=.Machine$double.eps

classWeights a numeric named vector of weights for the different classes, used for asymmetric
class sizes. Each element of the vector must have one of the class names but not
all class names must be present. Default=1

cross an integer value K > 0 indicates that k-fold cross validation should be performed.
A value -1 is used for Leave-One-Out (LOO) cross validation. (see above) De-
fault=0

noCross an integer value larger than 0 is used to specify the number of repetitions for
cross validation. This parameter is only relevant if ’cross’ is different from 0.
Default=1

groupBy allows a grouping of samples during cross validation. The parameter is only rel-
evant when ’cross’ is larger than 1. It is an integer vector or factor with the same
length as the number of samples used for training and specifies for each sample
to which group it belongs. Samples from the same group are never spread over
more than one fold. (see crossValidation). Grouped cross validation can also
be used in grid search for each grid point. Default=NULL

nestedCross in integer value K > 0 indicates that a model selection with nested cross valida-
tion should be performed with a k-fold outer cross validation. The inner cross
validation is defined with the ’cross’ parameter (see below), Default=0

noNestedCross an integer value larger than 0 is used to specify the number of repetitions for the
nested cross validation. This parameter is only relevant if ’nestedCross’ is larger
than 0. Default=1

perfParameters a character vector with one or several values from the set "ACC" , "BACC",
"MCC", "AUC" and "ALL". "ACC" stands for accuracy, "BACC" for balanced
accuracy, "MCC" for Matthews Correlation Coefficient, "AUC" for area under

40 kbsvm,BioVector-method

the ROC curve and "ALL" for all four. This parameter defines which perfor-
mance parameters are collected in cross validation, grid search and model se-
lection for display purpose. The value "AUC" is currently not supported for
multiclass classification. Default=NULL

perfObjective a singe character string from the set "ACC", "BACC" and "MCC" (see previous
parameter). The parameter is only relevant in grid search and model selection
and defines which performance measure is used to determine the best perform-
ing parameter set. Default="ACC"

probModel when setting this boolean parameter to TRUE a probability model is determined
as part of the training (see below). Default=FALSE

sel subset of indices into x. When this parameter is present the training is performed
for the specified subset of samples only. Default=integer(0)

features feature subset of the specified kernel in the form of a character vector. When a
feature subset is passed to the function all other features in the feature space are
not considered for training (see below). A feature subset can only be used when
a single kernel object is specified in the ’kernel’ parameter. Default=NULL

showProgress when setting this boolean parameter to TRUE the progress of a cross valida-
tion is displayed. The parameter is only relevant for cross validation. De-
fault=FALSE

showCVTimes when setting this boolean parameter to TRUE the runtimes of the cross valida-
tion runs are shown after the cross validation is finished. The parameter is only
relevant for cross validation. Default=FALSE

runtimeWarning when setting this boolean parameter to FALSE a warning for long runtimes will
not be shown in case of large feature space dimension or large number of sam-
ples. Default=TRUE

verbose boolean value that indicates whether KeBABS should print additional messages
showing the internal processing logic in a verbose manner. The default value
depends on the R session verbosity option. Default=getOption("verbose")

... additional parameters which are passed to SVM training transparently.

Details

Overview

The kernel-related functionality provided in this package is specifically centered around biologi-
cal sequences, i.e. DNA-, RNA- or AA-sequences (see also DNAStringSet, RNAStringSet and
AAStringSet) and Support Vector Machine (SVM) based methods. Apart from the implementa-
tion of the most relevant kernels for sequence analysis (see spectrumKernel, mismatchKernel,
gappyPairKernel and motifKernel) KeBABS also provides a framework which allows easy in-
terworking with existing SVM implementations in other R packages. In the current implementation
the SVMs provided in the packages kernlab, e1071 and LiblineaR are in focus. Starting with
version 1.2.0 KeBABS also contains the dense implementation of LIBSVM which is functionally
equivalent to the sparse implementation of LIBSVM in package e1071 but additionally supports
dense kernel matrices as preferred implementation for learning via kernel matrices.

This framework can be considered like a "meta-SVM", which provides a simple and unified user
interface to these SVMs for classification (binary and multiclass) and regression tasks. The user
calls the "meta-SVM" in a classical SVM-like manner by passing sequence data, a sequence kernel
with kernel parameters and the SVM which should be used for the learning task togehter with SVM
parameters. KeBABS internally generates the relevant representations (see getKernelMatrix or

kbsvm,BioVector-method 41

getExRep) from the sequence data using the specified kernel, adapts parameters and formats to the
selected SVM and internally calls the actual SVM implementation in the requested package. Ke-
BABS unifies the result returned from the invoked SVM and returns a unified data structure, the
KeBABS model, which also contains the SVM-specific model (see svmModel.

The KeBABS model is used in prediction (see predict) to predict the response for new sequence
data. On user request the feature weights are computed and stored in the Kebabs model during
training (see below). The feature weights are used for the generation of prediction profiles (see
getPredictionProfile) which show the importance of sequence positions for a specfic learning
task.

Training of biological sequences with a sequence kernel

Training is performed via the method kbsvm for classification and regression tasks. The user passes
sequence data, the response vector, a sequence kernel object and the requested SVM along with
SVM parameters to kbsvm and receives the training results in the form of a KeBABS model object
of class KBModel. The accessor svmModel allows to retrieve the SVM specific model from the
KeBABS model object. However, for regular operation a detailed look into the SVM specific model
is usually not necessary.

The standard data format for sequences in KeBABS are the XStringSet-derived classes DNAStringSet,
RNAStringSet and AAStringSet. (When repeat regions are coded as lowercase characters and
should be excluded from the analysis the sequence data can be passed as BioVector which also
supports lowercase characters instead of XStringSet format. Please note that the classes derived
from XStringSet are much more powerful than the BioVector derived classes and should be used
in all cases where lowercase characters are not needed).

Instead of sequences also a precomputed explicit representation or a precomputed kernel matrix can
be used for training. Examples for training with kernel matrix and explicit representation can be
found on the help page for the prediction method predict.

Apart from SVM training kbsvm can be also used for cross validation (see crossValidation and pa-
rameters cross and noCross), grid search for SVM- and kernel-parameter values (see gridSearch)
and model selection (see modelSelection and parameters nestedCross and noNestedCross).

Package and SVM selection

The user specifies the SVM implementation to be used for a learning task by selecting the package
with the pkg parameter and the SVM method in the package with the SVM parameter. Currently the
packages kernlab, e1071 and LiblineaR are supported. The names for SVM methods vary from
package to package and KeBABS provide following unified names which can be selected across
packages. The following table shows the available SVM methods:

SVM name description
———————– —————————————– ———
C-svc: C classification (with L2 regularization and L1 loss)
l2rl2l-svc: classif. with L2 regularization and L2 loss (dual)
l2rl2lp-svc: classif. with L2 regularization and L2 loss (primal)
l1rl2l-svc: classification with L1 regularization and L2 loss
nu-svc: nu classification

42 kbsvm,BioVector-method

C-bsvc: bound-constraint SVM classification
mc-natC: Crammer, Singer native multiclass
mc-natW: Weston, Watkins native multiclass
one-svc: one class classification
eps-svr: epsilon regression
nu-svr: nu regression
eps-bsvr: bound-constraint svm regression

Pairwise multiclass can be selected for C-svc and nu-svc if the label vector contains more than
two classes. For LiblineaR the multiclass implementation is always based on "one against the
rest" for all SVMs except for mc-natC which implements native multiclass according to Crammer
and Singer. The following table shows which SVM method is available in which package:

SVM name kernlab e1071 LiblineaR
——————– ————– ————– —— ——–
C-svc: x x x
l2rl2l-svc: - - x
l2rl2lp-svc: - - x
l1rl2l-svc: - - x
nu-svc: x x -
C-bsvc: x - -
mc-natC: x - x
mc-natW: x - -
one-svc: x x -
eps-svr: x x -
nu-svr: x x -
eps-bsvr: x - -

SVM parameters

To avoid unnecessary changes of parameters names when switching between SVM implementation
in different packages unified names for identical parameters are available. They are translated by
KeBABS to the SVM specific name. The obvious example is the cost parameter for the C-svm. It
is named C in kernlab and cost in e1071 and LiblineaR. The unified name in KeBABS is cost. If
the parameter is passed to kbsvm in a package specific version it is translated back to the KeBABS
name internally. This applies to following parameters - here shown with their unified names:

parameter name description
———————– —————————————– ———–
cost: cost parameter of C-SVM
nu: nu parameter of nu-SVM
eps: epsilon parameter of eps-SVR and nu-SVR
classWeights: class weights for asymmetrical class size
tolerance: tolerance as termination crit. for optimization
cross: number of folds in k-fold cross validation

Hint: If a tolerance value is specified in kbsvm the same value should be used throughout the com-
plete analysis to make results comparable.

kbsvm,BioVector-method 43

The following table shows the relevance of the SVM parameters cost, nu and eps for the different
SVMs:

SVM name cost nu eps
——————– ————– ————– —– ———
C-svc: x - -
l1rl2l-svc: x - -
l1rl2lp-svc: x - -
l1rl2l-svc: x - -
nu-svc: - x -
C-bsvc: x - -
mc-natC: x - -
mc-natW: x - -
one-svc: x - -
eps-svr: - - x
nu-svr: - x -
eps-bsvr: - - x

Hint: Please be aware that identical parameter names between different SVMs do not necessarily
mean, that their values are also identical between packages but they depend on the actual SVM for-
mulation which could be different. For example the cost parameter is identical between C-SVMs
in packages kernlab, e1071 and LiblineaR but is for example different from the cost parameter
in l2rl2l-svc in LiblineaR because the C-SVM uses a linear loss but the l2rl2l-svc uses a quadratic
loss.

Feature weights

On user request (see parameter featureWeights) feature weights are computed amd stored in the
model (for a detailed description see getFeatureWeights). Pruning of feature weights can be
achieved with the parameter weightLimit which defines the cutoff for small feature weights not
stored in the model.

Hint: For training with a precomputed kernel matrix feature weights are not available. For multi-
class prediction is currently not performed via feature weights but native in the SVM.

Cross validation, grid search and model selection

Cross validation can be controlled with the parameters cross and noCross. For details on cross
validation see crossValidation. Grid search can be performed by passing multiple SVM parame-
ter values as vector instead of a single value to kbsvm. Also multiple sequence kernel objects and
multiple SVMs can be used for grid search. For details see gridSearch. For model selection nested
cross validation is used with the parameters nestedCross and noNestedCross for the outer and
cross and noCross for the inner cross validation. For details see modelSelection.

44 kbsvm,BioVector-method

Training with feature subset

After performing feature selection repeating the learning task with a feature subset can easily be
achieved by specifying a feature subset with the parameter features as character vector. The fea-
ture subset must be a subset from the feature space of the sequence kernel passed in the parameter
kernel. Grid search and model selection with a feature subset can only be used for a single se-
quence kernel object in the parameter kernel.

Hint: For normalized kernels all features of the feature space are used for normalization not just
the feature subset. For a normalized motif kernel (see motifKernel) only the features listed in the
motif list are part of the feature space. Therefore the motif kernel defined with the same feature
subset leads to a different result in the normalized case.

Probability model

SVMs from the packages kernlab and e1071 support the generation of a probability model using
Platt scaling (for details see kernlab, predict.ksvm, svm and predict.svm) allowing the compu-
tation of class probabilities during prediction. The parameter probabilityModel controls the gen-
eration of a probability model during training (see also parameter predictionType in predict).

Value

kbsvm: upon successful completion, the function returns a model of class KBModel. Results for
cross validation can be retrieved from this model with the accessor cvResult, results for grid search
or model selection with modelSelResult. In case of model selection the results of the outer cross
validation loop can be retrieved with with the accessor cvResult.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

predict, getKernelMatrix, getExRep, kernelParameters-method, spectrumKernel, mismatchKernel,
gappyPairKernel, motifKernel, getFeatureWeights

Examples

load transcription factor binding site data
data(TFBS)
enhancerFB
we use 70 of the samples for training and the rest for test
train <- sample(1:length(enhancerFB), length(enhancerFB) * 0.7)
test <- c(1:length(enhancerFB))[-train]

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

kbsvm,BioVector-method 45

create the kernel object for dimers without normalization
specK2 <- spectrumKernel(k=2)
show details of kernel object
specK2

run training with kernel matrix on e1071 (via the
dense LIBSVM implementation integrated in kebabs)
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=specK2,

pkg="e1071", svm="C-svc", C=10, explicit="no")

show KeBABS model
model
show class of KeBABS model
class(model)
show native SVM model contained in KeBABS model
svmModel(model)
show class of native SVM model
class(svmModel(model))

Not run:
examples for package and SVM selection
now run the same samples with the same kernel on e1071 via
explicit representation
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=specK2,

pkg="e1071", svm="C-svc", C=10, explicit="yes")

show KeBABS model
model
show native SVM model contained in KeBABS model
svmModel(model)
show class of native SVM model
class(svmModel(model))

run the same samples with the same kernel on e1071 with nu-SVM
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=specK2,

pkg="e1071", svm="nu-svc",nu=0.7, explicit="yes")

show KeBABS model
model

training with feature weights
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=specK2,

pkg="e1071", svm="C-svc", C=10, explicit="yes",
featureWeights="yes")

show feature weights
dim(featureWeights(model))
featureWeights(model)[,1:5]

training without feature weights
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=specK2,

pkg="e1071", svm="C-svc", C=10, explicit="yes",
featureWeights="no")

show feature weights
featureWeights(model)

46 kebabsCollectInfo

pruning of feature weights
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=specK2,

pkg="e1071", svm="C-svc", C=10, explicit="yes",
featureWeights="yes", weightLimit=0.5)

dim(featureWeights(model))

training with precomputed kernel matrix
feature weights cannot be computed for precomputed kernel matrix
km <- getKernelMatrix(specK2, x=enhancerFB, selx=train)
model <- kbsvm(x=km, y=yFB[train], kernel=specK2,

pkg="e1071", svm="C-svc", C=10, explicit="no")

training with precomputed explicit representation
exrep <- getExRep(enhancerFB, sel=train, kernel=specK2)
model <- kbsvm(x=exrep, y=yFB[train], kernel=specK2,

pkg="e1071", svm="C-svc", C=10, explicit="yes")

computing of probability model via Platt scaling during training
in prediction class membership probabilities can be computed
from this probability model
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=specK2,

pkg="e1071", svm="C-svc", C=10, explicit="yes",
probModel=TRUE)

show parameters of the fitted probability model which are the parameters
probA and probB for the fitted sigmoid function in case of classification
and the value sigma of the fitted Laplacian in case of a regression
probabilityModel(model)

cross validation, grid search and model selection are also performed
via the kbsvm method. Examples can be found on the respective help pages
(see Details section)

End(Not run)

kebabsCollectInfo Collect KeBABS Package Information

Description

Collects and prints general R and package version information. If you have a question related to
some KeBABS functionality or observe some unexpected behavior please call this function and
send its output together with your information to the contact address specified on the title page of
the package vignette. The function by default only outputs the package version of those packages
which are directly related to the KeBABS functionality.

Usage

kebabsCollectInfo(onlyKebabsRelated = TRUE)

kebabsData 47

Arguments

onlyKebabsRelated

if set to TRUE only the packages related to KeBABS are shown, if set to FALSE
all attached packages and all packages loaded via namespace are shown. De-
fault=TRUE

Value

see above

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

Examples

collect KeBABS related package information
kebabsCollectInfo()

kebabsData KeBABS Sequence Data

Description

The package contains two small sequence datasets for demonstration of the package functionality.

TFBS is a subset of EP300/CREBBP binding data provided with the publication Lee et al. (2011).
The data is based on binding sites identified with ChIP-seq by Visel et al. (2009). Please note that
due to package size restrictions only a small subset of the data used in Lee et al. (2011) is included
in the package. The following variables are defined:

• enhancerFB contains 259 DNA sequences of tissue specific enhancers from embryonic day
11.5 mouse embryos and 241 negative sequences sampled from mm9 genome.

• yFB contains the associated labels

CCoil is a set of heptad-annotated amino acid sequences of coiled coil proteins forming dimers or
trimers from the web site of the package PrOCoil by Mahrenholz et. al. (2011). The data contains
the sequences with heptad annotation, the oligomerization state and group assignment for each se-
quence. The grouping was performed through single linkage clustering of sequence similarities
based on pairwise ungapped alignment. Following variables are defined:

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

48 kebabsDemo

• ccseq contains 477 AA sequences of heptad-annotated amino acid sequences with a minimum
length of 8 and a maximun length of 123 AAs.

• yCC contains the associated oligomerization state "DIMER" or "TRIMER".

• ccannot is a charcter vector with the heptad annotations for the sequences. Characters ’a’
to ’f’ represent specific positions within the coiled coil structure. The AA string set already
contains the annotation as metadata. But for demonstration purpose it is available as separate
data item.

• ccgroups is a numeric vector containing the group numbers of of the sequences.

Format

TFBS contains the 259 positive and 241 negative sequences as DNAStringSet and the corresponding
labels as numeric vector containing a value of 1 for positive and -1 for negative samples.

CCoil contains the 477 AA sequences as AAStringSet and the corresponding labels as factor. The
heptad anntoation is stored as character vector and group assignment as numeric vector.

Author(s)

Johannes Palme

Source

TFBS: https://www.beerlab.org/p300enhancer/

CCoil: http://www.bioinf.jku.at/software/procoil/data.html

References

https://github.com/UBod/kebabs

D. Lee, R. Karchin and M. A. Beer (2011) Discriminative prediction of mammalian enhancers
from DNA sequence. Genome Research, 21(12):2167-2180. DOI: doi:10.1101/gr.121905.111.

A. Visel, M. J. Blow, Z. Li, T. Zhang, J. A. Akiyama, A. Holt, I. Plajzer-Frick, M. Shoukry,
C. Wright, F.Chen, V. Afzal, B. Ren, E. M. Rubin and L. A. Pennacchio (2009) ChIP-seq accu-
rately predicts tissue-specific activity of enhancers. Nature, 457(7231):854-858. DOI: doi:10.1038/
nature07730.

C.C. Mahrenholz, I.G. Abfalter, U. Bodenhofer, R. Volkmer and S. Hochreiter (2011) Complex net-
works govern coiled coil oligomerization - predicting and profiling by means of a machine learning
approach. Mol. Cell. Proteomics, 10(5):M110.004994. DOI: doi:10.1074/mcp.M110.004994.

kebabsDemo kebabs

https://www.beerlab.org/p300enhancer/
http://www.bioinf.jku.at/software/procoil/data.html
https://github.com/UBod/kebabs
https://doi.org/10.1101/gr.121905.111
https://doi.org/10.1038/nature07730
https://doi.org/10.1038/nature07730
https://doi.org/10.1074/mcp.M110.004994

kebabsDemo 49

Description

KeBABS - An R package for kernel based analysis
of biological sequences

Usage

kebabsDemo()

Details

Package Overview

The package provides functionality for kernel based analysis of DNA-, RNA- and amino acid se-
quences via SVM based methods. As core functionality kebabs contains following sequence ker-
nels: spectrum kernel, mismatch kernel, gappy pair kernel and motif kernel. Apart from an efficient
implementation of position independent functionality the kernels are extended in a novel way to
take the position of patterns into account for the similarity measure. Because of the flexibility of
the kernel formulation other kernels like the weighted degree kernel or the shifted weighted degree
kernel are included as special cases. An annotation specific variant of the kernels uses annotation
information placed along the sequence together with the patterns in the sequence. The package
allows generation of a kernel matrix or an explicit representation for all available kernels which can
be used with methods implemented in other R packages. With focus on SVM based methods ke-
babs provides a framework which simplifies the usage of existing SVM implementations in kernlab,
e1071 and LiblineaR. Binary and multiclass classification as well as regression tasks can be used
in a unified way without having to deal with the different functions, parameters and formats of the
selected SVM. As support for choosing hyperparameters the package provides cross validation, grid
search and model selection functions.For easier biological interpretation of the results the package
computes feature weights for all SVMs and prediction profiles, which show the contribution of in-
dividual sequence positions to the prediction result and give an indication about the relevance of
sequence sections for the learning result and the underlying biological functions.

Value

see above

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

50 KernelMatrix-class

Examples

load package provided sequence dataset
data(TFBS)

display sequences
enhancerFB

display part of label vector
head(yFB, 20)

display no of samples of positive and negative class
table(yFB)

split dataset into training and test samples
train <- sample(1:length(enhancerFB), 0.7*length(enhancerFB))
test <- c(1:length(enhancerFB))[-train]

create the kernel object for the normalized spectrum kernel
spec <- spectrumKernel(k=5)

train model
pass sequence subset, label subset, kernel object, the package and
svm which should be used for training together with the SVM parameters
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=spec,

pkg="LiblineaR", svm="C-svc", cost=10)

predict the test samples
pred <- predict(model, enhancerFB, sel=test)

evaluate the prediction result
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB))

KernelMatrix-class Kernel Matrix Class

Description

Kernel Matrix Class

Details

Instances of this class are used in KeBABS for storing a kernel matrix. The hidden data part ".Data"
contains the matrix.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

KernelMatrixAccessors 51

KernelMatrixAccessors KernelMatrix Accessors

Description

KernelMatrix Accessors

Usage

S4 method for signature 'KernelMatrix,index,missing,ANY'
x[i]

S4 method for signature 'matrix'
as.KernelMatrix(x, center = FALSE)

Arguments

x kernel matrix of class KernelMatrix

i numeric vector with indicies or character with element names

center when set to TRUE the matrix is centered. Default=FALSE

Value

see above

Accessor-like methods

x[i,] return as KernelMatrix object that only contains the rows selected with the subsetting
parameter i. This parameter can be a numeric vector with indices or a character vector which
is matched against the names of x.

x[, j] return a KernelMatrix object that only contains the columns selected with the subsetting
parameter j. This parameter can be a numeric vector with indices or a character vector which
is matched against the names of x.

x[i, j] return a KernelMatrix object that only contains the rows selected with the subsetting
parameter i and columns selected by j. Both parameters can be a numeric vector with indices
or a character vector which is matched against the names of x.

Coercion methods

In the code snippets below, x is a kernel matrix.

as.KernelMatrix(x, center=FALSE) centers the kernel matrix dependent on the center parame-
ter and coerce it to class KernelMatrix .

Author(s)

Johannes Palme

52 linearKernel

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

Examples

create kernel object for normalized spectrum kernel
specK5 <- spectrumKernel(k=5)
Not run:
load data
data(TFBS)

km <- specK5(enhancerFB)
km1to5 <- km[1:5,1:5]
km1to5

End(Not run)

linearKernel Linear Kernel

Description

Create a dense or sparse kernel matrix from an explicit representation

Usage

linearKernel(x, y = NULL, selx = integer(0), sely = integer(0),
sparse = FALSE, triangular = TRUE, diag = TRUE, lowerLimit = 0)

Arguments

x a dense or sparse explicit representation. x must be a sparse explicit repre-
sentation when a sparse kernel matrix should be returned by the function (see
parameter sparse).

y a dense or sparse explicit representation. If x is dense, y must be dense. If x is
sparse, y must be sparse.

selx a numeric or character vector for defining a subset of x. Default=integer(0)

sely a numeric or character vector for defining a subset of y. Default=integer(0)

sparse boolean indicating whether returned kernel matrix should be sparse or dense.
For value FALSE a dense kernel matrix of class KernelMatrix is returned. If set
to TRUE the kernel matrix is returned as sparse matrix of class dgCMatrix. In
case of a symmetric matrix either the lower triangular part or the full matrix can
be returned. Please note that a sparse kernel matrix currently can not be used for
SVM based learning in kebabs. Default=FALSE

triangular boolean indicating whether just the lower triangular or the full sparse matrix
should be returned. This parameter is only relevant for a sparse symmetric kernel
matrix. Default=TRUE

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

linearKernel 53

diag boolean indicating whether the diagonal should be included in a sparse tri-
angular matrix. This parameter is only relevant when parameter sparse and
triangular are set to TRUE. Default=TRUE

lowerLimit a numeric value for a similarity threshold. The parameter is relevant for sparse
kernel matrices only. If set to a value larger than 0 only similarity values larger
than this threshold will be included in the sparse kernel matrix. Default=0

Value

linearKernel: kernel matrix as class KernelMatrix or sparse kernel matrix of class dgCMatrix
dependent on parameter sparse

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

Examples

load sequence data and change sample names
data(TFBS)
names(enhancerFB) <- paste("S", 1:length(enhancerFB), sep="_")

create the kernel object for dimers with normalization
speck <- spectrumKernel(k=5)

generate sparse explicit representation
ers <- getExRep(enhancerFB, speck)

compute dense kernel matrix (as currently used in SVM based learning)
km <- linearKernel(ers)
km[1:5, 1:5]

compute sparse kernel matrix
because it is symmetric just the lower diagonal
is computed to save storage
km <- linearKernel(ers, sparse=TRUE)
km[1:5, 1:5]

compute full sparse kernel matrix
km <- linearKernel(ers, sparse=TRUE, triangular=FALSE)
km[1:5, 1:5]

compute triangular sparse kernel matrix without diagonal
km <- linearKernel(ers, sparse=TRUE, triangular=TRUE, diag=FALSE)
km[1:5, 1:5]

plot histogram of similarity values
hist(as(km, "numeric"), breaks=30)

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

54 linWeight

compute sparse kernel matrix with similarities above 0.5 only
km <- linearKernel(ers, sparse=TRUE, lowerLimit=0.5)
km[1:5, 1:5]

linWeight Position Dependent Kernel

Description

Assign position related metadata and reate a kernel object with position dependency

Usage

linWeight(d, sigma = 1)

expWeight(d, sigma = 1)

gaussWeight(d, sigma = 1)

swdWeight(d)

S4 method for signature 'XStringSet'
positionMetadata(x) <- value

S4 method for signature 'BioVector'
positionMetadata(x) <- value

S4 method for signature 'XStringSet'
positionMetadata(x)

S4 method for signature 'BioVector'
positionMetadata(x)

Arguments

d a numeric vector of distance values

sigma a positive numeric value defining the peak width or in case of gaussWeight the
width of the bell function (details see below)

x biological sequences in the form of a DNAStringSet, RNAStringSet, AAStringSet
(or as BioVector)

value for assignment of position metadata the value is an integer vector with gives
the offset to the start position 1 for each sequence. Positive and negative offset
values are possible. Without position metadata all sequences must be aligned
and start at position 1. For deletion of position metadata set value to NULL.

linWeight 55

Details

Position Dependent Kernel

For the standard spectrum kernel kmers are considered independent of their position in the cal-
culation of the similarity value between two sequences. For position dependent kernels the position
of a kmer/pattern is also of importance. Position information for a pair of sequences can be used in
a sequenceKernel in three different ways representing the full range of position dependency:

• Position independent kernel: ignores the position of patterns and just takes the number of their
occurances or their presence (see parameter presence in functions spectrumKernel,gappyPairKernel,
motifKernel) in the sequences into account for similarity determination.

• Distance weighted kernel: uses the position related distance between the occurance of the
same pattern in the two sequences in weighted form as contribution to the similarity value
(see below under Distance Weighted kernel)

• Position specific kernel: considers patterns only if they occur at the same position in the two
sequences (see below under Position Specific Kernel)

Position dependency is available in all kernels except the mismatch kernel.

Distance Weighted Kernel

These kernels weight the contribution to the similarity value based on the distance of their start
positions in the two sequences. The user can define the distance weights either through passing a
distance weighting function or a weight vector to the kernel. Through this weighting the degree
of locality in the similarity consideration between two sequences can be adjusted flexibly. Such a
position dependent kernel can be used in the same way as the normal position independent kernel
variant. Distance weighting can be used for all kernels in this package except the mismatch kernel.
The package defines four predefined weighting functions (see also examples):

• linWeigth: a weighting function with linear decrease

• expWeight: a weighting function with exponential decrease

• gaussWeigth: a bell-shaped weighting function with a decrease similar to a gaussian distribu-
tion

• swdWeight: the distance weighting function used in the Shifted Weighted Degree (SWD)
kernel which is similar to an exponential decrease but it has a smaller peak and larger tails

Also user-defined functions can be used for distance weighting. (see below)

Position Specific Kernel

One variant of position dependent kernels is the position specific kernel. This kernel takes patterns
into account only if they are located at identical positions in the two sequences. This kernel can be
selected through passing a distance weight value of 1 to the kernel indicating that the neighborhood
of a pattern in the other sequence is irrelevant for the similarity consideration. This kernel is in fact
one end of the spectrum (sic!) where locality is reduced to the exact location and the normal posi-
tion independent kernel is at the other end - not caring about position at all. Through adjustment of
sigma in the predefined functions a continous blending between these two extremes is possible for
the degree of locality. Evaluation of position information is controlled through setting the param-
eter distWeight to 1 in the functions spectrumKernel, gappyPairKernel, motifKernel. This
parameter value is in fact interpreted as a numeric vector with 1 for zero distance and 0 for all other
distances.

56 linWeight

Positive Definiteness

The standard SVMs only support positive definite kernels / kernel matrices. This means that the
distance weighting function must must be chosen such that the resulting kernel is positive definite.
For positive definiteness also symmetry of the distance weighting function is important. Unlike
usual distances the relative distance value here can have positive and negative values dependent on
whether the pattern in the second sequence is located at higher or lower positions than the pattern
in the first sequence. The predefined distance weighting functions except for swdWeight deliver a
positive definite kernel for all parameter settings. According to Sonnenburg et al. 2005 the SWD
kernel has empirically shown positive definiteness but it is not proved for this kernel. If a weight
vector with predefined weights per distance is passed to the kernel instead of a distance weighting
function positive definiteness of the kernel must also be ensured by adequate selection of the weight
values.

User-Defined Distance Function

For user defined distance functions symmetry and positive definitness of the resulting kernel are
important. Such a function gets a numeric distance vector ’x’ as input (and possibly other param-
eters controlling the weighting behavior) and returns a weight vector of identical length. When
called with a missing parameter x all other parameters must be supplied or have appropriate default
values. In this case the function must return a new function with just the single parameter x which
calls the original user defined function with x and all the other parameters set to the values passed
in the call.

This behavior is needed for assignment of the function with missing parameter x to the distWeight
parameter in the kernel. At the time of kernel definition the actual distance values are not available.
Later when sequence data is passed to this kernel for generation of a kernel matrix or an explicit
representation this single argument function is called to get the distance dependent weights. The
code for the predefined expWeight function in the example section below shows how a user-specific
function can be set up.

Offset

To allow flexible alignment of sequence positions without redefining the XStringSet or BioVector an
additional metadata element named offset can be assigned to the sequence set via positionMetadata<-
(see example below). Position metadata is a numeric vector with the same number of elements as
the sequence set and gives for each sequence an offset to position 1. When positions metadata is
not assigned to a sequence set the position 1 is associated with the first character in each sequence
of the sequence set., i.e. in this case the sequences should be aligned such that all have the same
starting positions with respect to the learning task (e.g. all sequences start at a transcription start
site). Offset information is only evaluated in position dependent kernel variants.

Value

The distance weighting functions return a numerical vector with distance weights.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

https://github.com/UBod/kebabs

linWeight 57

U. Bodenhofer, K. Schwarzbauer, M. Ionescu, and S. Hochreiter (2009) Modelling position speci-
ficity in sequence kernels by fuzzy equivalence relations. Proc. Joint 13th IFSA World Congress
and 6th EUSFLAT Conference, pp. 1376-1381, Lisbon.

S. Sonnenburg, G. Raetsch, and B. Schoelkopf (2005) Large scale genomic sequence SVM classi-
fiers. Proc. 22nd Int. Conf. on Machine learning, pp. 848-855. DOI: doi:10.1145/1102351.1102458.

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

spectrumKernel, gappyPairKernel, motifKernel, annotationMetadata, metadata, mcols

Examples

plot predefined weighting functions for sigma=10
curve(linWeight(x, sigma=10), from=-20, to=20, xlab="pattern distance",
ylab="weight", main="Predefined Distance Weighting Functions", col="green")
curve(expWeight(x, sigma=10), from=-20, to=20, col="blue", add=TRUE)
curve(gaussWeight(x, sigma=10), from=-20, to=20, col="red", add=TRUE)
curve(swdWeight(x), from=-20, to=20, col="orange", add=TRUE)
legend('topright', inset=0.03, title="Weighting Functions", c("linWeight",

"expWeight", "gaussWeight", "swdWeight"),
fill=c("green", "blue", "red", "orange"))

text(14, 0.70, "sigma = 10")

instead of user provided sequences in XStringSet format
for this example a set of DNA sequences is created
RNA- or AA-sequences can be used as well with the motif kernel
dnaseqs <- DNAStringSet(c("AGACTTAAGGGACCTGGTCACCACGCTCGGTGAGGGGGACGGGGTGT",

"ATAAAGGTTGCAGACATCATGTCCTTTTTGTCCCTAATTATTTCAGC",
"CAGGAATCAGCACAGGCAGGGGCACGGCATCCCAAGACATCTGGGCC",
"GGACATATACCCACCGTTACGTGTCATACAGGATAGTTCCACTGCCC",
"ATAAAGGTTGCAGACATCATGTCCTTTTTGTCCCTAATTATTTCAGC"))

names(dnaseqs) <- paste("S", 1:length(dnaseqs), sep="")

create a distance weighted spectrum kernel with linear decrease of
weights in a range of 20 bases
spec20 <- spectrumKernel(k=3, distWeight=linWeight(sigma=20))

show details of kernel object
kernelParameters(spec20)

this kernel can be now be used in a classification or regression task
in the usual way or a kernel matrix can be generated for use with
another learning method
km <- spec20(x=dnaseqs, selx=1:5)
km[1:5,1:5]

Not run:
instead of a distance weighting function also a weight vector can be
passed in the distWeight parameter but the values must be chosen such
that they lead to a positive definite kernel

https://doi.org/10.1145/1102351.1102458
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

58 linWeight

##
in this example only patterns within a 5 base range are considered with
slightly decreasing weights
specv <- spectrumKernel(k=3, distWeight=c(1,0.95,0.9,0.85,0.8))
km <- specv(dnaseqs)
km[1:5,1:5]

position specific spectrum kernel
specps <- spectrumKernel(k=3, distWeight=1)
km <- specps(dnaseqs)
km[1:5,1:5]

get position specific kernel matrix
km <- specps(dnaseqs)
km[1:5,1:5]

example with offset to align sequence positions (e.g. the
transcription start site), the value gives the offset to position 1
positionOne <- c(9,6,3,1,6)
positionMetadata(dnaseqs) <- positionOne
show position metadata
positionMetadata(dnaseqs)
generate kernel matrix with position-specific spectrum kernel
km1 <- specps(dnaseqs)
km1[1:5,1:5]

example for a user defined weighting function
please stick to the order as described in the comments below and
make sure that the resulting kernel is positive definite

expWeightUserDefined <- function(x, sigma=1)
{

check presence and validity of all parameters except for x
if (!isSingleNumber(sigma))

stop("'sigma' must be a number")

if x is missing the function returns a closure where all parameters
except for x have a defined value
if (missing(x))

return(function(x) expWeightUserDefined(x, sigma=sigma))

pattern distance vector x must be numeric
if (!is.numeric(x))

stop("'x' must be a numeric vector")

create vector of distance weights from the
input vector of pattern distances x
exp(-abs(x)/sigma)

}

define kernel object with user defined weighting function
specud <- spectrumKernel(k=3, distWeight=expWeightUserDefined(sigma=5),

normalized=FALSE)

End(Not run)

mismatchKernel 59

mismatchKernel Mismatch Kernel

Description

Create a mismatch kernel object and the kernel matrix

Usage

mismatchKernel(k = 3, m = 1, r = 1, normalized = TRUE, exact = TRUE,
ignoreLower = TRUE, presence = FALSE)

S4 method for signature 'MismatchKernel'
getFeatureSpaceDimension(kernel, x)

Arguments

k length of the substrings also called kmers; this parameter defines the size of the
feature space, i.e. the total number of features considered in this kernel is |A|^k,
with |A| as the size of the alphabet (4 for DNA and RNA sequences and 21 for
amino acid sequences). Default=3

m number of maximal mismatch per kmer. The allowed value range is between 1
and k-1. The processing effort for this kernel is highly dependent on the value
of m and only small values will allow efficient processing. Default=1

r exponent which must be > 0 (see details section in spectrumKernel). Default=1

normalized a kernel matrix or explicit representation generated with this kernel will be nor-
malized(details see below). Default=TRUE

exact use exact character set for the evaluation (details see below). Default=TRUE

ignoreLower ignore lower case characters in the sequence. If the parameter is not set lower
case characters are treated like uppercase. Default=TRUE

presence if this parameter is set only the presence of a kmers will be considered, otherwise
the number of occurances of the kmer is used. Default=FALSE

kernel a sequence kernel object

x one or multiple biological sequences in the form of a DNAStringSet, RNAStringSet,
AAStringSet (or as BioVector)

Details

Creation of kernel object

The function ’mismatchKernel’ creates a kernel object for the mismatch kernel. This kernel ob-
ject can then be used with a set of DNA-, RNA- or AA-sequences to generate a kernel matrix or
an explicit representation for this kernel. For values different from 1 (=default value) parameter r
leads to a transfomation of similarities by taking each element of the similarity matrix to the power
of r. If normalized=TRUE, the feature vectors are scaled to the unit sphere before computing the
similarity value for the kernel matrix. For two samples with the feature vectors x and y the similarity
is computed as:

s =
x⃗T y⃗

∥x⃗∥∥y⃗∥

60 mismatchKernel

For an explicit representation generated with the feature map of a normalized kernel the rows are
normalized by dividing them through their Euclidean norm. For parameter exact=TRUE the se-
quence characters are interpreted according to an exact character set. If the flag is not set ambigous
characters from the IUPAC characterset are also evaluated. The annotation specific variant (for de-
tails see positionMetadata) and the position dependent variant (for details see annotationMetadata)
are not available for this kernel.

Creation of kernel matrix

The kernel matrix is created with the function getKernelMatrix or via a direct call with the kernel
object as shown in the examples below.

Value

mismatchKernel: upon successful completion, the function returns a kernel object of class MismatchKernel.

of getDimFeatureSpace: dimension of the feature space as numeric value

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

C.S. Leslie, E. Eskin, J. Weston, and W.S. Noble. Mismatch string kernels for discriminative pro-
tein classification. Bioinformatics, 1:1-10. DOI: doi:10.1093/bioinformatics/btg431.

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

kernelParameters, getKernelMatrix, getExRep, spectrumKernel, gappyPairKernel, motifKernel,
MismatchKernel

Examples

instead of user provided sequences in XStringSet format
for this example a set of DNA sequences is created
RNA- or AA-sequences can be used as well with the mismatch kernel
dnaseqs <- DNAStringSet(c("AGACTTAAGGGACCTGGTCACCACGCTCGGTGAGGGGGACGGGGTGT",

"ATAAAGGTTGCAGACATCATGTCCTTTTTGTCCCTAATTATTTCAGC",
"CAGGAATCAGCACAGGCAGGGGCACGGCATCCCAAGACATCTGGGCC",
"GGACATATACCCACCGTTACGTGTCATACAGGATAGTTCCACTGCCC",
"ATAAAGGTTGCAGACATCATGTCCTTTTTGTCCCTAATTATTTCAGC"))

names(dnaseqs) <- paste("S", 1:length(dnaseqs), sep="")

create the kernel object with one mismatch per kmer
mm <- mismatchKernel(k=2, m=1, normalized=FALSE)
show details of kernel object
mm

generate the kernel matrix with the kernel object

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btg431
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

MismatchKernel-class 61

km <- mm(dnaseqs)
dim(km)
km[1:5, 1:5]

alternative way to generate the kernel matrix
km <- getKernelMatrix(mm, dnaseqs)
km[1:5,1:5]

Not run:
plot heatmap of the kernel matrix
heatmap(km, symm=TRUE)

End(Not run)

MismatchKernel-class Mismatch Kernel Class

Description

Mismatch Kernel Class

Details

Instances of this class represent a kernel object for the mismatch kernel. The class is derived from
SequenceKernel.

Slots

k length of the substrings considered by the kernel
m maximum number of mismatches
r exponent (for details see mismatchKernel)
annSpec not used for mismatch kernel
distWeight not used for mismatch kernel
normalized data generated with this kernel object is normalized
exact use exact character set for evaluation
ignoreLower ignore lower case characters in the sequence
presence consider only the presence of kmers not their counts
revComplement not used for mismatch kernel
mixCoef not used for mismatch kernel

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

62 ModelSelectionResult-class

ModelSelectionResult-class

Model Selection Result Class

Description

Model Selection Result Class

Details

Instances of this class store the result of grid search or model selection.

Slots

cross number of folds for cross validation

noCross number of CV runs

groupBy group assignment of samples

nestedCross number of folds for outer CV

noNestedCross number of runs of outer CV

perfParameters collected performance parameters

perfObjective performance criterion for grid search / model selection

gridRows rows in grid search (i.e. kernels)

gridCols columns in grid search

gridErrors grid errors

gridACC grid accuracy

gridBACC grid balanced accuracy

gridMCC grid Matthews correlation coefficient

gridAUC grid area under the ROC curve

gridNoSV grid number of support vectors

gridSumAlphas grid sum of alphas

smallestCVError smallest CV error

selGridRow grid row of best result

selGridCol grid col of best result

fullModel full model for best result

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

ModelSelectionResultAccessors 63

ModelSelectionResultAccessors

ModelSelectionResult Accessors

Description

ModelSelectionResult Accessors

Usage

S4 method for signature 'ModelSelectionResult'
gridRows(object)

Arguments

object a model selection result object (can be extracted from KeBABS model with
accessor modelSelResult)

Value

gridRows: returns a list of kernel objects
gridColumns: returns a DataFrame object with grid column parameters
gridErrors: returns a matrix with grid errors
performance: returns a list of matrices with performance values selGridRow: returns the selected
kernel selGridCol: returns the selected SVM and/or hyperparameter(s) fullModel: returns a ke-
babs model of class KBModel

Accessor-like methods

In all descriptions below, object is an object of class ModelSelectionResult.

gridRows(object) returns the grid rows containing the kernels.

gridColumns(object) returns the grid columns.

gridErrors(object) returns the grid CV errors.

performance(object) return the collected performance parameters.

selGridRow(object) returns the selected grid row.

selGridCol(object) returns the selected grid column.

fullModel(object) returns the full model.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

64 motifKernel

Examples

create kernel object for normalized spectrum kernel
specK5 <- spectrumKernel(k=5)
Not run:
load data
data(TFBS)

perform training - feature weights are computed by default
model <- kbsvm(enhancerFB, yFB, specK5, pkg="LiblineaR",

svm="C-svc", cost=c(1,15,50,100), cross=10,
perfParameters="ALL", showProgress=TRUE)

show model selection result
mres <- modelSelResult(model)
mres

extract grid errors
gridErrors(mres)

extract other performance parameters
performance(mres)

End(Not run)

motifKernel Motif Kernel

Description

Create a motif kernel object and the kernel matrix

Usage

motifKernel(motifs, r = 1, annSpec = FALSE, distWeight = numeric(0),
normalized = TRUE, exact = TRUE, ignoreLower = TRUE, presence = FALSE)

S4 method for signature 'MotifKernel'
getFeatureSpaceDimension(kernel, x)

Arguments

motifs a set of motif patterns specified as character vector. The order in which the
patterns are passed for creation of the kernel object also determines the order
of the features in the explicit representation. Lowercase characters in motifs are
always converted to uppercase. For details concerning the definition of motif
patterns see below and in the examples section.

r exponent which must be > 0 (see details section in spectrumKernel). Default=1

annSpec boolean that indicates whether sequence annotation should be taken into account
(details see on help page for annotationMetadata). Default=FALSE

distWeight a numeric distance weight vector or a distance weighting function (details see
on help page for gaussWeight). Default=NULL

motifKernel 65

normalized generated data from this kernel will be normalized (details see below). De-
fault=TRUE

exact use exact character set for the evaluation (details see below). Default=TRUE

ignoreLower ignore lower case characters in the sequence. If the parameter is not set lower
case characters are treated like uppercase. default=TRUE

presence if this parameter is set only the presence of a motif will be considered, otherwise
the number of occurances of the motif is used; Default=FALSE

kernel a sequence kernel object

x one or multiple biological sequences in the form of a DNAStringSet, RNAStringSet,
AAStringSet (or as BioVector)

Details

Creation of kernel object

The function ’motif’ creates a kernel object for the motif kernel for a set of given DNA-, RNA-
or AA-motifs. This kernel object can then be used to generate a kernel matrix or an explicit rep-
resentation for this kernel. The individual patterns in the set of motifs are built similar to regular
expressions through concatination of following elements in arbitrary order:

• a specific character from the used character set - e.g. ’A’ or ’G’ in DNA patterns for matching
a specific character

• the wildcard character ’.’ which matches any valid character of the character set except ’-’

• a substitution group specified by a collection of characters from the character set enclosed in
square brackets - e.g. [AG] - which matches any of the listed characters; with a leading ’^’ the
character list is inverted and matching occurs for all characters of the character set which are
not listed except ’-’

For values different from 1 (=default value) parameter r leads to a transfomation of similarities by
taking each element of the similarity matrix to the power of r. For the annotation specific variant
of this kernel see annotationMetadata, for the distance weighted variants see positionMetadata. If
normalized=TRUE, the feature vectors are scaled to the unit sphere before computing the similarity
value for the kernel matrix. For two samples with the feature vectors x and y the similarity is
computed as:

s =
x⃗T y⃗

∥x⃗∥∥y⃗∥
For an explicit representation generated with the feature map of a normalized kernel the rows are
normalized by dividing them through their Euclidean norm. For parameter exact=TRUE the se-
quence characters are interpreted according to an exact character set. If the flag is not set ambigous
characters from the IUPAC characterset are also evaluated.

The annotation specific variant (for details see annotationMetadata) and the position dependent
variants (for details see positionMetadata) either in the form of a position specific or a distance
weighted kernel are supported for the motif kernel. The generation of an explicit representation is
not possible for the position dependent variants of this kernel.

Hint: For a normalized motif kernel with a feature subset of a normalized spectrum kernel the ex-
plicit representation will not be identical to the subset of an explicit representation for the spectrum
kernel because the motif kernel is not aware of the other kmers which are used in the spectrum
kernel additionally for normalization.

Creation of kernel matrix

66 motifKernel

The kernel matrix is created with the function getKernelMatrix or via a direct call with the kernel
object as shown in the examples below.

Value

motif: upon successful completion, the function returns a kernel object of class MotifKernel.

of getDimFeatureSpace: dimension of the feature space as numeric value

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

A. Ben-Hur and D. Brutlag () Remote homology detection: a motif based approach. Bioinfor-
matics, 19:26-33. DOI: doi:10.1093/bioinformatics/btg1002.

U. Bodenhofer, K. Schwarzbauer, M. Ionescu, and S. Hochreiter (2009) Modelling position speci-
ficity in sequence kernels by fuzzy equivalence relations. Proc. Joint 13th IFSA World Congress
and 6th EUSFLAT Conference, pp. 1376-1381, Lisbon.

C.C. Mahrenholz, I.G. Abfalter, U. Bodenhofer, R. Volkmer and S. Hochreiter (2011) Complex net-
works govern coiled coil oligomerization - predicting and profiling by means of a machine learning
approach. Mol. Cell. Proteomics, 10(5):M110.004994. DOI: doi:10.1074/mcp.M110.004994.

UJ. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

kernelParameters-method, getKernelMatrix, getExRep, spectrumKernel, mismatchKernel,
gappyPairKernel

Examples

instead of user provided sequences in XStringSet format
for this example a set of DNA sequences is created
RNA- or AA-sequences can be used as well with the motif kernel
dnaseqs <- DNAStringSet(c("AGACTTAAGGGACCTGGTCACCACGCTCGGTGAGGGGGACGGGGTGT",

"ATAAAGGTTGCAGACATCATGTCCTTTTTGTCCCTAATTATTTCAGC",
"CAGGAATCAGCACAGGCAGGGGCACGGCATCCCAAGACATCTGGGCC",
"GGACATATACCCACCGTTACGTGTCATACAGGATAGTTCCACTGCCC",
"ATAAAGGTTGCAGACATCATGTCCTTTTTGTCCCTAATTATTTCAGC"))

names(dnaseqs) <- paste("S", 1:length(dnaseqs), sep="")

create the kernel object with the motif patterns
mot <- motifKernel(c("A[CG]T","C.G","G[^A][AT]"), normalized=FALSE)
show details of kernel object
mot

generate the kernel matrix with the kernel object

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btg1002
https://doi.org/10.1074/mcp.M110.004994
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

MotifKernel-class 67

km <- mot(dnaseqs)
dim(km)
km

alternative way to generate the kernel matrix
km <- getKernelMatrix(mot, dnaseqs)

Not run:
plot heatmap of the kernel matrix
heatmap(km, symm=TRUE)

generate rectangular kernel matrix
km <- mot(x=dnaseqs, selx=1:3, y=dnaseqs, sely=4:5)
dim(km)
km

End(Not run)

MotifKernel-class Motif Kernel Class

Description

Motif Kernel Class

Details

Instances of this class represent a kernel object for the motif kernel. The class is derived from
SequenceKernel. The motif character vector is not stored in the kernel object.

Slots

r exponent (for details see motifKernel)
annSpec when set the kernel evaluates annotation information
distWeight distance weighting function or vector
normalized data generated with this kernel object is normalized
exact use exact character set for evaluation
ignoreLower ignore lower case characters in the sequence
presence consider only the presence of motifs not their counts
revComplement consider a kmer and its reverse complement as the same feature

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

68 performCrossValidation,KernelMatrix-method

performCrossValidation,KernelMatrix-method

KeBABS Cross Validation

Description

Perform cross validation as k-fold cross validation, Leave-One-Out cross validation(LOOCV) or
grouped cross validation (GCV).

Usage

kbsvm(......, cross=0, noCross=1,)

please use kbsvm for cross validation and do not call the
performCrossValidation method directly

S4 method for signature 'ExplicitRepresentation'
performCrossValidation(object, x, y, sel,
model, cross, noCross, groupBy, perfParameters, verbose)

Arguments

object a kernel matrix or an explicit representation

x an optional set of sequences

y a response vector

sel sample subset for which cross validation should be performed

model KeBABS model

cross an integer value K > 0 indicates that k-fold cross validation should be performed.
A value -1 is used for Leave-One-Out (LOO) cross validation. (see above) De-
fault=0

noCross an integer value larger than 0 is used to specify the number of repetitions for
cross validation. This parameter is only relevant if ’cross’ is different from 0.
Default=1

groupBy allows a grouping of samples during cross validation. The parameter is only
relevant when ’cross’ is larger than 1. It is an integer vector or factor with the
same length as the number of samples used for training and specifies for each
sample to which group it belongs. Samples from the same group are never
spread over more than one fold. Grouped cross validation can also be used in
grid search for each grid point. Default=NULL

perfParameters a character vector with one or several values from the set "ACC" , "BACC",
"MCC", "AUC" and "ALL". "ACC" stands for accuracy, "BACC" for balanced
accuracy, "MCC" for Matthews Correlation Coefficient, "AUC" for area under
the ROC curve and "ALL" for all four. This parameter defines which perfor-
mance parameters are collected in cross validation for display purpose. The
summary values are computed as mean of the fold values. AUC computation
from pooled decision values requires a calibrated classifier output and is cur-
rently not supported. Default=NULL

performCrossValidation,KernelMatrix-method 69

verbose boolean value that indicates whether KeBABS should print additional messages
showing the internal processing logic in a verbose manner. The default value
depends on the R session verbosity option. Default=getOption("verbose")
this parameter is not relevant for cross validation because the method performCrossValidation
should not be called directly. Cross validation is performed with the method
kbsvm and the parameters cross and numCross are described there

Details

Overview

Cross validation (CV) provides an estimate for the generalization performance of a model based on
repeated training on different subsets of the data and evaluating the prediction performance on the
remaining data not used for training. Dependent on the strategy of splitting the data different vari-
ants of cross validation exist. KeBABS implements k-fold cross validation, Leave-One-Out cross
validation and Leave-Group-Out cross validation which is a specific variant of k-fold cross valida-
tion. Cross validation is invoked with kbsvm through setting the parameters cross and noCross. It
can either be used for a given kernel and specific values of the SVM hyperparameters to compute
the cross validation error of a single model or in conjuction with grid search (see gridSearch) and
model selection (see modelSelection) to determine the performance of multiple models.

k-fold Cross Validation and Leave-One-Out Cross Validation(LOOCV)

For k-fold cross validation the data is split into k roughly equal sized subsets called folds. Samples
are assigned to the folds randomly. In k successive training runs one of the folds is kept in round-
robin manner for predicting the performance while using the other k-1 folds together as training
data. Typical values for the number of folds k are 5 or 10 dependent on the number of samples used
for CV. For LOOCV the fold size decreases to 1 and only a single sample is kept as hold out fold
for performance prediction requiring the same number of training runs in one cross validation run
as the number of sequences used for CV.

Grouped Cross Validation (GCV)

For grouped cross validation samples are assigned to groups by the user before running cross vali-
dation, e.g. via clustering the sequences. The predefined group assignment is passed to CV with the
parameter groupBy in kbsvm. GCV is a special version of k-fold cross validation which respects
group boundaries by avoiding to distribute samples of one group over multiple folds. In this way
the group(s) in the test fold do not occur during training and learning is forced to concentrate on
more complex features instead of the simple features splitting the groups. For GCV the parameter
cross must be smaller than or equal to the number of groups.

Cross Validation Result

The cross validation error, which is the average of the predicition errors in all held out folds, is used
as an estimate for the generalization error of the model assiciated with the cross validation run. For
classification the fraction of incorrectly classified samples and for regression the mean squared error
(MSE) is used as prediction error. Multiple cross validation runs can be performed through setting

70 performCrossValidation,KernelMatrix-method

the parameter noCross. The cross validation result can be extracted from the model object returned
by cross validation with the cvResult accessor. It contains the mean CV error over all runs, the
CV errors of the single runs and the CV error for each fold. The CV result object can be plotted
with the method plot showing the variation of the CV error for the different runs as barplot. With
the parameter perfParameters in kbsvm the accuracy, the balanced accuracy and the Matthews
correlation coefficient can be requested as additional performance parameters to be recorded in the
CV result object which might be of interest especially for unbalanced datasets.

Value

cross validation stores the cross validation results in the KeBABS model object returned by . They
can be retrieved with the accessor cvResult returned by kbsvm.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

kbsvm, cvResult, plot

Examples

load transcription factor binding site data
data(TFBS)
enhancerFB
select a few samples for training - here for demonstration purpose
normally you would use 70 or 80% of the samples for training and
the rest for test
train <- sample(1:length(enhancerFB), length(enhancerFB) * 0.7)
test <- c(1:length(enhancerFB))[-train]
train <- sample(1:length(enhancerFB), 50)
create a kernel object for the gappy pair kernel with normalization
gappy <- gappyPairKernel(k=1, m=4)
show details of kernel object
gappy

run cross validation with the kernel on C-svc in LiblineaR for cost=10
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=gappy,

pkg="LiblineaR", svm="C-svc", cost=10, cross=3)

show cross validation result
cvResult(model)

Not run:

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

performCrossValidation,KernelMatrix-method 71

perform tive cross validation runs
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=gappy,

pkg="LiblineaR", svm="C-svc", cost=10, cross=10, noCross=5)

show cross validation result
cvResult(model)

plot cross validation result
plot(cvResult(model))

run Leave-One-Out cross validation
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=gappy,

pkg="LiblineaR", svm="C-svc", cost=10, cross=-1)

show cross validation result
cvResult(model)

run gouped cross validation with full data
on coiled coil dataset
##
In this example the groups were determined through single linkage
clustering of sequence similarities derived from ungapped heptad-specific
pairwise alignment of the sequences. The variable {\tt ccgroup} contains
the pre-calculated group assignments for the individual sequences.
data(CCoil)
ccseq
head(yCC)
head(ccgroups)
gappyK1M6 <- gappyPairKernel(k=1, m=4)

run k-fold CV without groups
model <- kbsvm(x=ccseq, y=as.numeric(yCC), kernel=gappyK1M6,
pkg="LiblineaR", svm="C-svc", cost=10, cross=3, noCross=2,
perfObjective="BACC",perfParameters=c("ACC", "BACC"))

show result without groups
cvResult(model)

run grouped CV
model <- kbsvm(x=ccseq, y=as.numeric(yCC), kernel=gappyK1M6,
pkg="LiblineaR", svm="C-svc", cost=10, cross=3,
noCross=2, groupBy=ccgroups, perfObjective="BACC",
perfParameters=c("ACC", "BACC"))

show result with groups
cvResult(model)

For grouped CV the samples in the held out fold are from a group which
is not present in training on the other folds. The simimar CV error
with and without groups shows that learning is not just assigning
labels based on similarity within the groups but is focusing on features
that are indicative for the class also in the CV without groups. For the
GCV no information about group membership for the samples in the held
out fold is present in the model. This example should show how GCV
is performed. Because of package size limitations no specific dataset is
available in this package where GCV is necessary.

72 performGridSearch

End(Not run)

performGridSearch KeBABS Grid Search

Description

Perform grid search with one or multiple sequence kernels on one or multiple SVMs with one or
multiple SVM parameter sets.

Usage

kbsvm(...., kernel=list(kernel1, kernel2), pkg=pkg1, svm=svm1,
cost=cost1,, cross=0, noCross=1,)

kbsvm(...., kernel=kernel1, pkg=pkg1, svm=svm1,
cost=c(cost1, cost2),, cross=0, noCross=1,)

kbsvm(...., kernel=kernel1, pkg=c(pkg1, pkg1, pkg1),
svm=c(svm1, svm2, svm3), cost=c(cost1, cost2, cost3),,
cross=0, noCross=1,)

kbsvm(...., kernel=kernel1, pkg=c(pkg1, pkg2, pkg3),
svm=c(svm1, svm2, svm3), cost=c(cost1, cost2, cost3),,
cross=0, noCross=1,)

kbsvm(...., kernel=list(kernel1, kernel2, kernel3), pkg=c(pkg1, pkg2),
svm=c(svm1, svm2), cost=c(cost1, cost2),, cross=0,
noCross=1,)

for details see below

Arguments

kernel and other parameters see kbsvm

Details

Overview

To simplify the selection of an appropriate sequence kernel (including setting of the kernel param-
eters), SVM implementation and setting of SVM hyperparameters KeBABS provides grid search
functionality. In addition to the possibility of running the same learning tasks for different settings
of the SVM hyperparameters the concept of grid search is seen here in the broader context of finding
good values for all major variable parts of the learning task which includes:

• selection of the sequence kernel and standard kernel parameters: spectrum, mismatch, gappy
pair or motif kernel

• selection of the kernel variant: regular, annotation-specific, position-specific or distance weighted
kernel variants

performGridSearch 73

• selection of the SVM implementation via package and SVM

• selection of the SVM hyperparameters for the SVM implementation

KeBABS supports the joint variation of any combination of these learning aspects together with
cross validation (CV) to find the best selection based on cross validation performance. After the
grid search the performance values of the different settings and the best setting of the grid search
run can be retrieved from the KeBABS model with the accessor modelSelResult.

Grid search is started with the method kbsvm by passing multiple values to parameters for which
in regular training only a single parameter value is used. Multiple values can be passed for the
parameter kernel as list of kernel objects and for the parameters pkg, svm and the hyperparameters
of the used SVMs as vectors (numeric or integer vector dependent on the hyperparameter). The
parameter cost in the usage section above is just one representative of SVM hyperparameters that
can be varied in grid search. Following types of grid search are supported (for examples see below):

• variation of one or multiple hyperparameter(s) for a given SVM implementation and one spe-
cific kernel by passing hyperparameter values as vectors

• variation of the kernel parameters of a single kernel:
for the sequence kernels in addition to the standard kernel parameters like k for spectrum or
m for gappy pair analysis can be performed in a position-independent or position-dependent
manner with multiple distance weighting functions and different parameter settings for the
distance weighting functions (see positionMetadata) or with or without annotation specific
functionality (see annotationMetadata using one specific or multiple annotations resulting
in considerable variation possibilities on the kernel side. The kernel objects for the different
parameter settings of the kernel must be precreated and are passed as list to kbsvm. Usually
each kernel has the best performance at differernt hyperparameter values. Therefore in general
just varying the kernel parameters without varying the hyperparameter values does not make
sense but both must be varied together as described below.

• variation of multiple SVMs from the same or different R packages with identical or different
SVM hyperparameters (dependent on the formulation of the SVM objective) for one specific
kernel

• combination of the previous three variants as far as runtime allows (see also runtime hints
below)

For collecting performance values grid search is organized in a matrix like manner with different
kernel objects representing the rows and different hyperparameter settings or SVM and hyperpa-
rameter settings as columns of the matrix. If multiple hyperparameters are used on a single SVM
the same entry in all hyperparameter vectors is used as one parameter set corresponding to a single
column in the grid matrix. The same applies to multiple SVMs, i.e. when multiple SVMs are used
from the same package the pkg parameter still must have one entry for each entry in the svm param-
eter (see examples below). The best performing setting is reported dependent on the performance
objective.

Instead of a single training and test cycle for each grid point cross validation should be used to
get more representative results. In this case CV is executed for each parameter setting. For larger
datasets or kernels with higher complexity the runtime for the full grid search should be limited
through adequate selection of the parameter cross.

Performance measures and performance objective

74 performGridSearch

The usual performance measure for grid search is the cross validation error which is stored by
default for each grid point. For e.g. non-symmetrical class distribution of the dataset other per-
formance measures can be more expressive. For such sitations also the accuracy, the balanced
accuracy and the Matthews correlation coefficient can be stored for a grid point (see parame-
ter perfParameters in kbsvm. (The accuracy corresponds fully to the CV error because it is
just the inverted measure. It is included for easier comparability with the balanced accuracy).
The performance values can be retrieved from the model selection result object with the acces-
sor performance. The objective for selecting the best performing paramters settings is by default
the CV error. With the parameter perfObjective in kbsvm one of the other above mentioned per-
formance parameters can be chosen as objective for the best settings instead of the cross validation
error.

Runtime Hints

When parameter showCVTimes in kbsvm is set to TRUE the runtime for the individual cross valida-
tion runs is shown for each grid point. In this way quick runtime estimates can be gathered through
running the grid search for a reduced grid and extrapolating the runtimes to the full grid. Display
of a progress indication in grid search is available with the parameter showProgress in kbsvm.

Dependent on the number of sequences, the complexity of the kernel processing, the type of cho-
sen cross validation and the degree of variation of parameters in grid search the runtime can grow
drastically. One possible strategy for reducing the runtime could be a stepwise approach searching
for areas with good performance in a first coarse grid search run and then refining the areas of good
performance with additional more fine grained grid searches.

The implementation of the sequence kernels was done with a strong focus on runtime performance
which brings a considerable improvement compared to other implementations. In KeBABS also an
interface to the very fast SVM implementations in package LiblineaR is available. Beyond these
performance improvements KeBABS also supports the generation of sparse explicit representations
for every sequence kernel which can be used instead of the kernel matrix for learning. In many
cases especially with a large number of samples where the kernel matrix would become too large
this alternative provides additional dynamical benefits. The current implementation of grid search
does not make use of multi-core infrastructures, the entire processing is done on a single core.

Value

grid search stores the results in the KeBABS model. They can be retrieved with the accessor
modelSelResult{KBModel}.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

performGridSearch 75

See Also

kbsvm, spectrumKernel, mismatchKernel, gappyPairKernel, motifKernel, positionMetadata,
annotationMetadata, performModelSelection

Examples

load transcription factor binding site data

data(TFBS)
enhancerFB
The C-svc implementation from LiblineaR is chosen for most of the
examples because it is the fastest SVM implementation. With SVMs from
other packages slightly better results could be achievable.
To get a realistic image of possible performance values, kernel behavior
and speed of grid search together with 10-fold cross validation a
resonable number of sequences is needed which would exceed the runtime
restrictions for automatically executed examples. Therefore the grid
search examples must be run manually. In these examples we use the full
dataset for grid search.
train <- sample(1:length(enhancerFB), length(enhancerFB))

grid search with single kernel object and multiple hyperparameter values
create gappy pair kernel with normalization
gappyK1M3 <- gappyPairKernel(k=1, m=3)
show details of single gappy pair kernel object
gappyK1M3

grid search for a single kernel object and multiple values for cost
pkg <- "LiblineaR"
svm <- "C-svc"
cost <- c(0.01,0.1,1,10,100,1000)
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=gappyK1M3,

pkg=pkg, svm=svm, cost=cost, explicit="yes", cross=3)

show grid search results
modelSelResult(model)

Not run:
create the list of spectrum kernel objects with normalization and
kernel parameters values for k from 1 to 5
specK15 <- spectrumKernel(k=1:5)
show details of the four spectrum kernel objects
specK15

run grid search with several kernel parameter settings for the
spectrum kernel with a single SVM parameter setting
ATTENTION: DO NOT USE THIS VARIANT!
This variant does not bring comparable performance for the different
kernel parameter settings because usually the best performing
hyperparameter values could be quite different for different kernel
parameter settings or between different kernels, grid search for
multiple kernel objects should be done as shown in the next example
pkg <- "LiblineaR"
svm <- "C-svc"
cost <- 2
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=specK15,

76 performGridSearch

pkg=pkg, svm=svm, cost=cost, explicit="yes", cross=10)

show grid search results
modelSelResult(model)

grid search with multiple kernel objects and multiple values for
hyperparameter cost
pkg <- "LiblineaR"
svm <- "C-svc"
cost <- c(0.01,0.1,1,10,50,100,150,200,500,1000)
model <- kbsvm(x=enhancerFB, sel=train, y=yFB[train], kernel=specK15,

pkg=pkg, svm=svm, cost=cost, explicit="yes", cross=10,
showProgress=TRUE)

show grid search results
modelSelResult(model)

grid search for a single kernel object with multiple SVMs
from different packages
here with display of cross validation runtimes for each grid point
pkg, svm and cost vectors must have same length and the corresponding
entry in each of these vectors are one SVM + SVM hyperparameter setting
pkg <- rep(c("kernlab", "e1071", "LiblineaR"),3)
svm <- rep("C-svc", 9)
cost <- rep(c(0.01,0.1,1),each=3)
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=gappyK1M3,

pkg=pkg, svm=svm, cost=cost, explicit="yes", cross=3,
showCVTimes=TRUE)

show grid search results
modelSelResult(model)

run grid search for a single kernel with multiple SVMs from same package
here all from LiblineaR: C-SVM, L2 regularized SVM with L2 loss and
SVM with L1 regularization and L2 loss
attention: for different formulation of the SMV objective use different
values for the hyperparameters even if they have the same name
pkg <- rep("LiblineaR", 9)
svm <- rep(c("C-svc","l2rl2l-svc","l1rl2l-svc"), each=3)
cost <- c(1,150,1000,1,40,100,1,40,100)
model <- kbsvm(x=enhancerFB, sel=train, y=yFB[train], kernel=gappyK1M3,

pkg=pkg, svm=svm, cost=cost, explicit="yes", cross=3)

show grid search results
modelSelResult(model)

create the list of kernel objects for gappy pair kernel
gappyK1M15 <- gappyPairKernel(k=1, m=1:5)
show details of kernel objects
gappyK1M15

run grid search with progress indication with ten kernels and ten
hyperparameter values for cost and 10 fold cross validation on full
dataset (500 samples)
pkg <- rep("LiblineaR", 10)
svm <- rep("C-svc", 10)
cost <- c(0.0001,0.001,0.01,0.1,1,10,100,1000,10000,100000)

performModelSelection 77

model <- kbsvm(x=enhancerFB, y=yFB, kernel=c(specK15, gappyK1M15),
pkg=pkg, svm=svm, cost=cost, cross=10, explicit="yes",
showCVTimes=TRUE, showProgress=TRUE)

show grid search results
modelSelResult(model)

End(Not run)

performModelSelection KeBABS Model Selection

Description

Perform model selection with one or multiple sequence kernels on one or multiple SVMs with one
or multiple SVM parameter sets.

Usage

kbsvm(...., kernel=..., pkg=..., svm=..., cost=...,,
cross=0, noCross=1,, nestedCross=0, noNestedCross=1,)

For details see below. With parameter nestedCross > 1 model selection is
performed, the other parameters are handled identical to grid search.

Arguments

nestedCross for this and other parameters see kbsvm

Details

Overview

Model selection in KeBABS is based on nested k-fold cross validation (CV) (for details see per-
formCrossValidation). The inner cross validation is used to determine the best parameters settings
(kernel parameters and SVM parameters) and the outer cross validation to verify the performance
on data that was not included in the selection of the best model. The training folds of the outer CV
are used to run a grid search with the inner cross validation running for each point of the grid (see
performGridSearch to find the best performing model. Once this model is selected the perfor-
mance of this model on the held out fold of the outer CV is determined. Different model parameters
settings could occur for different held out folds of the outer CV. This means that model selection
does not deliver a performance estimate for a single best model but for the complete model selection
process.

For each run of the outer CV KeBABS stores the selected parameter setting for the best performing
model. The default performance objective for selecting the best parameters setting is based on min-
imizing the CV error on the inner CV. With the parameter perfObjective in kbsvm the balanced
accuracy or the Matthews correlation coefficient can be used instead for which the parameter setting
with the maximal value is selected. The parameter setting of the best performing model for each
fold in the outer CV can be retrieved from the KeBABS model with the accessor modelSelResult.
The performance values on the outer CV are retrieved from the model with the accessor cvResult.

78 performModelSelection

Model selection is invoked through the method kbsvm through setting parameter nestedCross >
1. For the parameters kernel,pkg, svm and SVM hyperparameters the handling is identical to
grid search (see performGridSearch). The parameter cost in the usage section above is just one
representative of SVM hyperparameters to indicate their relevance for model selection. The com-
plete model selection process can be repeated multiple times through setting noNestedCross to
the number of desired repetitions. Nested cross validation used in model selection is dynam-
ically more demanding than grid search. Concerning runtime please see the runtime hints for
performGridSearch.

Value

model selection stores the results in the KeBABS model. They can be retrieved with the accessor
modelSelResult{KBModel}. Results from the outer cross validation are extracted from the model
with the accessorcvResult.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

kbsvm, performGridSearch, modelSelResult, cvResult

Examples

load transcription factor binding site data
data(TFBS)
enhancerFB
The C-svc implementation from LiblineaR is chosen for most of the
examples because it is the fastest SVM. With SVMs from other packages
slightly better results could be achievable. Because of the higher
runtime needed for nested cross validation please run the examples
below manually. All samples of the data set are used in the examples.
train <- sample(1:length(enhancerFB), length(enhancerFB))

model selection with single kernel object and multiple
hyperparameter values, 5 fold inner CV and 3 fold outer CV
create gappy pair kernel with normalization
gappyK1M3 <- gappyPairKernel(k=1, m=3)
show details of single gappy pair kernel object
gappyK1M3

pkg <- "LiblineaR"
svm <- "C-svc"
cost <- c(50,100,150,200,250,300)
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=gappyK1M3,

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

plot,PredictionProfile,missing-method 79

pkg=pkg, svm=svm, cost=cost, explicit="yes", cross=3,
nestedCross=2, showProgress=TRUE)

show best parameter settings
modelSelResult(model)

show model selection result which is the result of the outer CV
cvResult(model)
Not run:
repeated model selection
pkg <- "LiblineaR"
svm <- "C-svc"
cost <- c(50,100,150,200,250,300)
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=gappyK1M3,

pkg=pkg, svm=svm, cost=cost, explicit="yes", cross=10,
nestedCross=3, noNestedCross=3, showProgress=TRUE)

show best parameter settings
modelSelResult(model)

show model selection result which is the result of the outer CV
cvResult(model)

plot CV result
plot(cvResult(model))

End(Not run)

plot,PredictionProfile,missing-method

Plot Prediction Profiles, Cross Validation Result, Grid Search Perfor-
mance Parameters and Receiver Operating Characteristics

Description

Functions for visualizing prediction profiles, cross validation result, grid search performance pa-
rameters and receiver operating characteristics

Usage

S4 method for signature 'PredictionProfile,missing'
plot(x, sel = NULL, col = c("red",
"blue"), standardize = TRUE, shades = NULL, legend = "default",
legendPos = "topright", ylim = NULL, xlab = "", ylab = "weight",
lwd.profile = 1, lwd.axis = 1, las = 1, heptads = FALSE,
annotate = FALSE, markOffset = TRUE, windowSize = 1, ...)

S4 method for signature 'CrossValidationResult,missing'
plot(x, col = "springgreen")

S4 method for signature 'ModelSelectionResult,missing'
plot(x, sel = c("ACC", "BACC", "MCC",
"AUC"))

80 plot,PredictionProfile,missing-method

S4 method for signature 'ROCData,missing'
plot(x, lwd = 2, aucDigits = 3, cex = 0.8,
side = 1, line = -3, adj = 0.9, ...)

Arguments

x for the first method above a prediction profile object of class PredictionProfile
containing the profiles to be plotted, for the second method a cross validation re-
sult object usually taken from the trained kebabs model object

sel an integer vector with one or two entries to select samples of the prediction
profile matrix for plotting, if this parameter is not supplied by the user the frist
one or two samples are selected.

col a character vector with one or two color names used for plotting the samples.
Default=c("red", "blue").

standardize logical. If FALSE, the profile values s_i are displayed as they are with the value
y = −b/L superimposed as a light gray line. If TRUE (default), the whole profile
is shifted by −b/L and the light gray line is displayed at y=0.

shades vector of at least two color specifications; If not NULL, the background area
above and below the base line y=-b/L are shaded in colors shades[1] and
shades[2], respectively. Default=NULL

legend a character vector with one or two character strings containing the legend/description
of the profile. If set to an empty vector or to NULL, no legend is displayed.

legendPos position specification for the legend(if legend is specified). Can either be a
vector with coordinates or a single keyword like “topright” (see legend).

ylim argument that allows the user to preset the y-range of the profile plot.

xlab label of horizontal axis, empty by default.

ylab label of vertical axis, defaults to "weight".

lwd.profile profile line width as described for parameter lwd in par

lwd.axis axis line width as described for parameter lwd in par

las see par

heptads logical indicating whether for proteins with heptad annotation (i.e. characters
a to g, usually in periodic repetition) the heptad structure should be indicated
through vertical lightgray lines each heptad. Default=FALSE

annotate logical indicating whether annotation information should be shown in the center
of the plot; Default=FALSE

markOffset logical indicating whether the start positions in the sequences according to the
assigned offset elmement metadata values should be shown near the sequence
characters; for the upper sequence the first position is marked by "^" below
the respective character, for the lower sequence it is marked by "v" above the
sequence. If no offset element metadata is assigned to the sequences the marks
are suppressed. Default=TRUE

windowSize length of sliding window. When the parameter is set to the default value 1 the
contributions of each position are plotted as step function. For kernels with mul-
tiple patterns at one position (mismatch, gappy pair and motif kernel) the weight
contributions of all patterns at the position are summed up. Values larger than
1 define the length of a sliding window. All contributions within the window
are averaged and the resulting value is displayed at the center position of the

plot,PredictionProfile,missing-method 81

window. For positions within half of the window size from the start and end of
the sequence the averaging cannot be performed over the full window but just
the remaining positions. This means that the variation of the averaged weight
contributions is higher in these border regions. If an even value is specified for
this parameter one is added to the parameter value. When the parameter is set
to Inf (infinite) instead of averages cumulative values along the sequence are
used, i.e. at each position the sum of all contributions up to this position is dis-
played. In this case the plot shows how the standardized or unstandardized value
(see parameter standardize) of the discrimination function builds up along the
sequence. Default=1

... all other arguments are passed to the standard plot command that is called in-
ternally to display the graphics window.

lwd see par

aucDigits number of decimal places of AUC to be printed into the ROC plot. If this pa-
rameter is set to 0 the AUC will not be added to the plot. Default=3

cex see mtext

side see mtext

line see mtext

adj see mtext

Details

Plotting of Prediction Profiles

The first variant of the plot method mentioned in the usage section displays one or two predic-
tion profiles as a step function with the steps connected by vertical lines. The parameter sel allows
to select the sample(s) if the prediction profile object contains the profiles of more than two sam-
ples. The alignment of the step functions is impacted by offset metadata assigned to the sequences.
When offset values are assigned one sequence if shifted horizontally to align the start position 1
pointed to by the offset value for each sequence. (see also parameter markOffset). If no offset
metadata is available for the sequences both step functions start at their first position on the left side
of the plot. The vertical plot range can be determined by the rng argument. If the plot is generated
for one profile, the sequence is is visualized above the plot, for two sequences the first sequence is
shown above, the second sequence below the plot. Matching characters at a position are shown in
the same color (by default in "black", the non-matching characters in the sample-specific colors
(see parameter col). Annotation information can also be visualized along with the step function. A
call with two prediction profiles should facilitate the comparison of profiles (e.g. wild type versus
mutated sequence).

The baseline for the step function of a single sample represents the offset b of the model distributed
equally to all sequence positions according to the following reformulation of the discriminant func-
tion

f(x⃗) = b+

L∑
i=1

(si(x⃗)) =

L∑
i=1

(si(x⃗)−
−b

L
)

For standardized plots (see parameter standardize this baseline value is subtracted from the weight
contribution at each position. When sequences of different length are plotted together only a stan-
dardized plot gives compareable y ranges for both step functions. For sequences of equal length
the visualization can be done in non-standardized or standardized form showing the lightgray hor-
izontal baseline at positon y = −b/L or at y = 0. If the area between the step function and the

82 plot,PredictionProfile,missing-method

baseline lying above the baseline is larger than the area below the baseline the sample is predicted as
belonging to the class assciated with positive values of the discrimination function, otherwise to the
opposite class. (For multiclass problems prediction profiles can only be generated from the feature
weights related to one of the classifiers in the pairwise or one-against-rest approaches leaving only
two classes for the profile plot.)

When plotting to a pdf it is recommended to use a height to width ratio of around 1:(max sequence
length/25), e.g. for a maximum sequence length of 500 bases or amino acids select height=10 and
width=200 when opening the pdf document for plotting.

Plotting of CrossValidation Result

The second variant of plot method shown in the usage section displays the cross validation re-
sult as boxplot.

Plotting of Grid Performance Values

The third variant of plot method shown in the usage section plots grid performance data as grid
with the color of each rectange corresponding to the preformance value of the grid point.

Plotting of Receiver Operating Characteristics (ROC)

The fourth variant of plot method shown in the usage section plots the receiver operating char-
acteristics for the given ROC data.

Value

see details above

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

getPredictionProfile, positionDependentKernel, mcols, spectrumKernel, mismatchKernel,
gappyPairKernel, motifKernel

Examples

set seed for random generator, included here only to make results
reproducable for this example
set.seed(456)
load transcription factor binding site data
data(TFBS)
enhancerFB
select 70% of the samples for training and the rest for test

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

predict,KBModel-method 83

train <- sample(1:length(enhancerFB), length(enhancerFB) * 0.7)
test <- c(1:length(enhancerFB))[-train]
create the kernel object for gappy pair kernel with normalization
gappy <- gappyPairKernel(k=1, m=3)
show details of kernel object
gappy

run training with explicit representation
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=gappy,

pkg="LiblineaR", svm="C-svc", cost=80, explicit="yes",
featureWeights="yes")

compute and plot ROC for test sequences
preddec <- predict(model, enhancerFB[test], predictionType="decision")
rocdata <- computeROCandAUC(preddec, yFB[test], allLabels=unique(yFB))
plot(rocdata)

generate prediction profile for the first three test sequences
predProf <- getPredictionProfile(enhancerFB, gappy, featureWeights(model),

modelOffset(model), sel=test[1:3])

show prediction profiles
predProf

plot prediction profile to pdf
As sequences are usually very long select a ratio of height to width
for the pdf which takes care of the maximum sequence length which is
plotted. Only single or pairs of prediction profiles can be plotted.
Plot profile for window size 1 (default) and 50. Load package Biobase
for openPDF
Not run:
library(Biobase)
pdf(file="PredictionProfile1_w1.pdf", height=10, width=200)
plot(predProf, sel=c(1,3))
dev.off()
openPDF("PredictionProfile1_w1.pdf")
pdf(file="PredictionProfile1_w50.pdf", height=10, width=200)
plot(predProf, sel=c(1,3), windowSize=50)
dev.off()
openPDF("PredictionProfile1_w50.pdf")
pdf(file="PredictionProfile2_w1.pdf", height=10, width=200)
plot(predProf, sel=c(2,3))
dev.off()
openPDF("PredictionProfile2_w1.pdf")
pdf(file="PredictionProfile2_w50.pdf", height=10, width=200)
plot(predProf, sel=c(2,3), windowSize=50)
dev.off()
openPDF("PredictionProfile2_w50.pdf")

End(Not run)

predict,KBModel-method

KeBABS Prediction Methods

84 predict,KBModel-method

Description

predict response values for new biological sequences from a model trained with kbsvm

Usage

S4 method for signature 'KBModel'
predict(object, x, predictionType = "response",
sel = NULL, raw = FALSE, native = FALSE, predProfiles = FALSE,
verbose = getOption("verbose"), ...)

Arguments

object model object of class KBModel created by kbsvm.

x multiple biological sequences in the form of a DNAStringSet, RNAStringSet,
AAStringSet (or as BioVector). Also a precomputed kernel matrix (see getKernelMatrix
or a precomputed explicit representation (see getExRep can be used instead.
The same type of input that was used for training the model should also be used
for prediction. If the parameter x is missing the response is computed for the
sequences used for SVM training.

predictionType one character string of either "response", "probabilities" or "decision" which
indicates the type of data returned by prediction: predicted response, class prob-
abilities or decision values. Class probabilities can only be computed if a proba-
bility model was generated during the training (for details see parameter probModel
in kbsvm). Default="response"

sel subset of indices into x. When this parameter is present the training is performed
for the specified subset of samples only. Default=integer(0)

raw when setting this boolean parameter to TRUE the prediction result is returned in
raw form, i.e. in the SVM specific format. Default=FALSE

native when setting this boolean parameter to TRUE the prediction is not preformed via
feature weights in the KeBABS model but native in the SVM. Default=FALSE

predProfiles when this boolean parameter is set to TRUE the prediction profiles are computed
for the samples passed to predict. Default=FALSE

verbose boolean value that indicates whether KeBABS should print additional messages
showing the internal processing logic in a verbose manner. The default value
depends on the R session verbosity option. Default=getOption("verbose")

... additional parameters which are passed to SVM prediction transparently.

Details

Prediction for KeBABS models

For the samples passed to the predict method the response (which corresponds to the predicted
label in case of classification or the predicted target value in case of regression), the decision value
(which is the value of decision function separating the classes in classification) or the class prob-
ability (probability for class membership in classification) is computed for the given model of
class KBModel. (see also parameter predictionType). For sequence data this includes the gen-
eration of an explicit representation or kernel matrix dependent on the processing variant that was
chosen for the training of the model. When feature weights were computed during training (see
parameter featureWeights in kbsvm) the response is computed entirely in KeBABS via the fea-
ture weights in the model object. The prediction performance can be evaluated with the function

predict,KBModel-method 85

evaluatePrediction.

If feature weights are not available in the model then native prediction is performed via the SVM
which was used for training. The parameter native enforces native prediction even when feature
weights are available. Instead of sequence data also a precomputed kernel matrix or a precomputed
explicit representation can be passed to predict. Prediction via feature weights is not supported for
kernel variants which do not support the generation of an explicit representation, e.g. the position
dependent kernel variants.

Prediction with precomputed kernel matrix

When training was performed with a precomputed kernel matrix also in prediction a precomputed
kernel matrix must be passed to the predict method. In contrast to the quadratic and symmetric
kernel matrix used in training the kernel matrix for prediction is rectangular and contains the simi-
larities of test samples (rows) against support vectors (columns). support vector indices can be read
from the model with the accessor SVindex. Please not that these indices refer to the sample subset
used in training. An example for training and prediction via precomputed kernel matrix is shown
below.

Generation of prediction profiles

The parameter predProfiles controls whether prediction profiles (for details see getPredictionProfile)
are generated during the prediction process for all predicted samples. They show the contribution of
the individual sequence positions to the response value. For a subset of sequences prediction profiles
can also be computed independent from predicition via the function getPredictionProfile.

Value

predict.kbsvm: upon successful completion, dependent on the parameter predictionType the func-
tion returns either response values, decision values or probability values for class membership.
When prediction profiles are also generated a list containing predictions and prediction profiles is
passed back to the user.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

KBModel, evaluatePrediction, kbsvm, getPredictionProfile, PredictionProfile

Examples

load transcription factor binding site data
data(TFBS)
enhancerFB
select 70% of the samples for training and the rest for test

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

86 predict,KBModel-method

train <- sample(1:length(enhancerFB), length(enhancerFB) * 0.7)
test <- c(1:length(enhancerFB))[-train]
create the kernel object for gappy pair kernel with normalization
gappy <- gappyPairKernel(k=1, m=1)
show details of kernel object
gappy

run training with explicit representation
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=gappy,

pkg="LiblineaR", svm="C-svc", cost=10)

show feature weights in KeBABS model
featureWeights(model)[1:8]

predict the test sequences
pred <- predict(model, enhancerFB[test])
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB))
pred[1:10]

output decision values instead
pred <- predict(model, enhancerFB[test], predictionType="decision")
pred[1:10]

Not run:
example for training and prediction via precomputed kernel matrix

compute quadratic kernel matrix of training samples
kmtrain <- getKernelMatrix(gappy, x=enhancerFB, selx=train)

train model with kernel matrix
model <- kbsvm(x=kmtrain, y=yFB[train], kernel=gappy,

pkg="e1071", svm="C-svc", cost=10)

compute rectangular kernel matrix of test samples versus
support vectors
kmtest <- getKernelMatrix(gappy, x=enhancerFB, y=enhancerFB,

selx=test, sely=train)

predict with kernel matrix
pred <- predict(model, kmtest)
evaluatePrediction(pred, yFB[test], allLabels=unique(yFB))

example for probability model generation during training

compute probability model via Platt scaling during training
and predict class membership probabilities
model <- kbsvm(x=enhancerFB[train], y=yFB[train], kernel=gappy,

pkg="e1071", svm="C-svc", cost=10, probModel=TRUE)

show parameters of the fitted probability model which are the parameters
probA and probB for the fitted sigmoid function in case of classification
and the value sigma of the fitted Laplacian in case of a regression
probabilityModel(model)

predict class probabilities
prob <- predict(model, enhancerFB[test], predictionType="probabilities")
prob[1:10]

PredictionProfile-class 87

End(Not run)

PredictionProfile-class

Prediction Profile Class

Description

Prediction Profile Class

Details

This class stores prediction profiles generated for a set of biological sequences from a trained model.
Prediction profiles show the relevance of individual sequence positions for the prediction result.

Slots

sequences sequence information for the samples with profiles

baselines baselines generated from the offset in the model spread
to all sequence positions

profiles prediction profile information stored as dense matrix with
the rows as samples and the columns as positions in the sample

kernel kernel used for training the model on which these prediction
profiles are based

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

PredictionProfileAccessors

PredictionProfile Accessors

Description

PredictionProfile Accessors

Usage

S4 method for signature 'PredictionProfile'
sequences(object)

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

88 PredictionProfileAccessors

Arguments

object a prediction profile object

Value

sequences: sequences for which profiles were generated
profiles: prediction profiles
baselines: baselines for the plot, this is the model offset
distributed to all sequence positions

Accessor-like methods

In the descriptions below, object and x are objects of class PredictionProfile.

sequences(object) returns the sequences.
profiles(object) return the prediction profiles.
baselines(object) return the baselines.
x[i] return a PredictionProfile object that only contains the prediction profiles selected with

the subsetting parameter i. This parameter can be a numeric vector with indices or a character
vector with sample names.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

Examples

create kernel object for gappy pair kernel
gappy <- gappyPairKernel(k=1,m=11, annSpec=TRUE)
Not run:
load data
data(CCoil)

perform training - feature weights are computed by default
model <- kbsvm(ccseq, yCC, gappya, pkg="LiblineaR", svm="C-svc", cost=15)

compute prediction profiles
predProf <- getPredictionProfile(ccseq, gappya,

featureWeights(model),
modelOffset(model))

predProf15 <- predProf[c(1,5),]
sequences(predProf15)
profiles(predProf15)
baselines(predProf15)

End(Not run)

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

predictSVM 89

predictSVM SVM Access for Training and Prediction

Description

Functions for SVM access (used only for testing purpose)

Usage

predictSVM.KernelMatrix(x, model, predictionType, verbose, ...)

S4 method for signature 'missing'
predictSVM(x, model, predictionType, verbose, ...)

S4 method for signature 'ExplicitRepresentation'
predictSVM(x, model, predictionType, verbose,
...)

S4 method for signature 'KernelMatrix'
trainSVM(x, y = NULL, svmInfo, verbose, ...)

S4 method for signature 'ExplicitRepresentation'
trainSVM(x, y = NULL, svmInfo, verbose,
...)

Arguments

x kernel matrix or explicit representation

model KeBABS model

predictionType type of prediction

verbose controlling verbosity

... additional arguments to be passed to the selected SVM

y label vector

svmInfo SVM related info

Details

These methods are exported only for test purpose and are not meant to be generally used.

Value

trainSVM: returns the SVM specific model

predictSVM: returns the prediction in native format

Author(s)

Johannes Palme

90 ROCData-class

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

Examples

this function is exported only for testing purpose
use function kbsvm instead for examples see help page of kbsvm
data(TFBS)

ROCData-class ROC Data Class

Description

ROC Data Class

Details

This class stores receiver operating characteristics (ROC) data.

Slots

AUC area under ROC curve

TPR true positive rate for varying threshold

FPR false positive rate for varying threshold

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176
https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

ROCDataAccessors 91

ROCDataAccessors ROCData Accessors

Description

ROCData Accessors

Usage

S4 method for signature 'ROCData'
auc(object)

Arguments

object an object of class ROCData

Value

auc: returns a numeric value
tpr: returns a numeric vector
fpr: returns a numeric vector

Accessor-like methods

In the descriptions below, object is an object of class ROCData.

auc(object) returns the area under the ROC curve.

tpr(object) returns the true positive rate values as numeric vector.

fpr(object) returns the false positive rate values as numeric vector.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

Examples

create kernel object for normalized spectrum kernel
specK5 <- spectrumKernel(k=5)
Not run:
load data
data(TFBS)

select 70% of the samples for training and the rest for test

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

92 seqKernelAsChar

train <- sample(1:length(enhancerFB), length(enhancerFB) * 0.7)
test <- c(1:length(enhancerFB))[-train]

perform training - feature weights are computed by default
model <- kbsvm(enhancerFB[train], yFB[train], specK5, pkg="LiblineaR",

svm="C-svc", cost=15)
preddec <- predict(model, enhancerFB[test], predictionType="decision")
rocdata <- computeROCandAUC(preddec, yFB[test], allLabels=unique(yFB))

accessor for auc
auc(rocdata)

End(Not run)

seqKernelAsChar Sequence Kernel

Description

Create the kernel matrix for a kernel object

Retrieve kernel parameters from the kernel object

Usage

seqKernelAsChar(from)

getKernelMatrix(kernel, x, y, selx, sely)

S4 method for signature 'SpectrumKernel'
kernelParameters(object)

S4 method for signature 'MismatchKernel'
kernelParameters(object)

S4 method for signature 'GappyPairKernel'
kernelParameters(object)

S4 method for signature 'MotifKernel'
kernelParameters(object)

S4 method for signature 'SymmetricPairKernel'
kernelParameters(object)

S4 method for signature 'SequenceKernel'
isUserDefined(object)

Arguments

from a sequence kernel object

kernel one kernel object of class SequenceKernel or one kernlab string kernel (see
stringdot

seqKernelAsChar 93

x one or multiple biological sequences in the form of a DNAStringSet, RNAStringSet,
AAStringSet (or as BioVector)

y one or multiple biological sequences in the form of a DNAStringSet, RNAStringSet,
AAStringSet (or as BioVector); if this parameter is specified a rectangular ker-
nel matrix with the samples in x as rows and the samples in y as columns is gen-
erated otherwise a square kernel matrix with samples in x as rows and columns
is computed; default=NULL

selx subset of indices into x; when this parameter is present the kernel matrix is
generated for the specified subset of x only; default=NULL

sely subset of indices into y; when this parameter is present the kernel matrix is
generated for the specified subset of y only; default=NULL

object a sequence kernel object

Details

Sequence Kernel

A sequence kernel is used for determination of similarity values between biological sequences based
on patterns occuring in the sequences. The kernels in this package were specifically written for the
biological domain. The corresponding term in the kernlab package is string kernel which is a do-
main independent implementation of the same functionality which often used in other domains, for
example in text classification. For the sequence kernels in this package DNA-, RNA- or AA-acid
sequences are used as input with a reduced character set compared to regular text.

In string kernels the actual position of a pattern in the sequence/text is irrelevant just the number of
occurances of the pattern is important for the similarity consideration. The kernels provided in this
package can be created in a position-independent or position-dependent way. Position dependent
kernels are using the postion of patterns on the pair of sequences to determine the contribution of a
pattern match to the similarity value. For details see help page for positionMetadata. As second
method of specializing similarity consideration in a kernel is to use annotation information which is
placed along the sequences. For details see annotationMetadata. Following kernels are available:

• spectrum kernel

• mismatch kernel

• gappy pair kernel

• motif kernel

These kernels are provided in a position-independent variant. For all kernels except the mismatch
also the position-dependent and the annotation-specific variants of the kernel are supported. In addi-
tion the spectrum and gappy pair kernel can be created as mixture kernels with the weighted degree
kernel and shifted weighted degree kernel being two specific examples of such mixture kernels. The
functions described below apply for any kind of kernel in this package. Retrieving kernel paramters
from the kernel object

The function ’kernelParameters’ retrieves the kernel parameters and returns them as list. The func-
tion ’seqKernelAsChar’ converts a sequnce kernel object into a character string.

Generation of kernel matrix

The function getKernelMatrix creates a kernel matrix for the specified kernel and one or two
given sets of sequences. It contains similarity values between pairs of samples. If one set of se-
quences is used the square kernel matrix contains pairwise similarity values for this set. For two

94 seqKernelAsChar

sets of sequences the similarities are calculated between these sets resulting in a rectangular kernel
matrix. The kernel matrix is always created as dense matrix of the class KernelMatrix. Alterna-
tively the kernel matrix can also be generated via a direct function call with the kernel object. (see
examples below)

Generation of explicit representation

With the function getExRep an explicit representation for a specified kernel and a given set of
sequences can be generated in sparse or dense form. Applying the linear kernel to the explicit
representation with the function linearKernel also generates a dense kernel matrix.

Value

getKernelMatrix: upon successful completion, the function returns a kernel matrix of class KernelMatrix
which contains similarity values between pairs of the biological sequences.

kernelParameters: the kernel parameters as list

isUserDefined: boolean indicating whether kernel is user-defined or not

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

as.KernelMatrix, KernelMatrix, spectrumKernel, mismatchKernel, gappyPairKernel, motifKernel

Examples

instead of user provided sequences in XStringSet format
for this example a set of DNA sequences is created
RNA- or AA-sequences can be used as well with the motif kernel
dnaseqs <- DNAStringSet(c("AGACTTAAGGGACCTGGTCACCACGCTCGGTGAGGGGGACGGGGTGT",

"ATAAAGGTTGCAGACATCATGTCCTTTTTGTCCCTAATTATTTCAGC",
"CAGGAATCAGCACAGGCAGGGGCACGGCATCCCAAGACATCTGGGCC",
"GGACATATACCCACCGTTACGTGTCATACAGGATAGTTCCACTGCCC",
"ATAAAGGTTGCAGACATCATGTCCTTTTTGTCCCTAATTATTTCAGC"))

names(dnaseqs) <- paste("S", 1:length(dnaseqs), sep="")

create the kernel object with the spectrum kernel
spec <- spectrumKernel(k=3, normalized=FALSE)

generate the kernel matrix
km <- getKernelMatrix(spec, dnaseqs)
dim(km)
km[1:5,1:5]

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

SequenceKernel-class 95

alternative way to generate the kernel matrix
km <- spec(dnaseqs)
km[1:5,1:5]

generate rectangular kernel matrix
km <- getKernelMatrix(spec, x=dnaseqs, selx=1:3, y=dnaseqs, sely=4:5)
dim(km)
km[1:3,1:2]

generate a sparse explicit representation
er <- getExRep(dnaseqs, spec)
er[1:5, 1:8]

generate kernel matrix from explicit representation
km <- linearKernel(er)
km[1:5,1:5]

SequenceKernel-class Sequence Kernel Class

Description

Sequence Kernel Class

Details

This class represents the parent class for all sequence kernels. It is an abstract class and must not be
instantiated.

Slots

.Data the kernel function is stored in this slot. It is executed when the kernel matrix is created
through invoking the kernel object.

.userDefKernel indicates whether kernel is user defined or not.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

96 show.BioVector

show.BioVector Display Various KeBABS Objects

Description

Display methods for BioVector, SpectrumKernel, MismatchKernel, GappyPairKernel, MotifKernel,
SymmetricPairKernel, ExplicitRepresentationDense, ExplicitRepresentationSparse, PredictionPro-
file, CrossValidationResult, ModelSelectionResult, SVMInformation and KBModel objects

Usage

show.BioVector(object)

S4 method for signature 'PredictionProfile'
show(object)

S4 method for signature 'SpectrumKernel'
show(object)

S4 method for signature 'MismatchKernel'
show(object)

S4 method for signature 'MotifKernel'
show(object)

S4 method for signature 'GappyPairKernel'
show(object)

S4 method for signature 'SymmetricPairKernel'
show(object)

S4 method for signature 'ExplicitRepresentationDense'
show(object)

S4 method for signature 'ExplicitRepresentationSparse'
show(object)

S4 method for signature 'CrossValidationResult'
show(object)

S4 method for signature 'ModelSelectionResult'
show(object)

S4 method for signature 'SVMInformation'
show(object)

S4 method for signature 'KBModel'
show(object)

S4 method for signature 'ROCData'
show(object)

show.BioVector 97

Arguments

object object of class BioVector, PredictionProfile, SpectrumKernel, MismatchKernel,
GappyPairKernel, MotifKernel, SymmetricPairKernel, ExplicitRepresentation,
ExplicitRepresentationSparse, PredictionProfile, CrossValidationResult, Mod-
elSelectionResult, SVMInformation or KBModel to be displayed

Details

show displays on overview of the selected object.

Value

show: show returns an invisible NULL

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

Examples

load coiled coil data
data(CCoil)

show amino acid sequences
ccseq

define spectrum kernel object
specK1 <- spectrumKernel(k=1, normalized=FALSE)

show kernel object
show(specK1)

compute explicit representation for the first 5 sequences
in dense format
er <- getExRep(ccseq, specK1, sel=1:5, sparse=FALSE)

show dense explicit representation
show(er)

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

98 showAnnotatedSeq

showAnnotatedSeq Annotation Specific Kernel

Description

Assign annotation metadata to sequences and create a kernel object which evaluates annotation in-
formation

Show biological sequence together with annotation

Usage

showAnnotatedSeq(x, sel = 1, ann = TRUE, pos = TRUE, start = 1,
end = width(x)[sel], width = NA)

S4 method for signature 'XStringSet'
annotationMetadata(x, annCharset= ...) <- value

S4 method for signature 'BioVector'
annotationMetadata(x, annCharset= ...) <- value

S4 replacement method for signature 'BioVector'
annotationMetadata(x, ...) <- value

S4 method for signature 'XStringSet'
annotationMetadata(x)

S4 method for signature 'BioVector'
annotationMetadata(x)

S4 method for signature 'XStringSet'
annotationCharset(x)

S4 method for signature 'BioVector'
annotationCharset(x)

Arguments

x biological sequences in the form of a DNAStringSet, RNAStringSet, AAStringSet
(or as BioVector)

sel single index into x for displaying a specific sequence. Default=1

ann show annotation information along with the sequence

pos show position information

start first postion to be displayed, by default the full sequence is shown

end last position to be displayed or use parameter ’width’

width number of positions to be displayed or use parameter ’end’

... additional parameters which are passed transparently.

showAnnotatedSeq 99

value character vector with annotation strings with same length as the number of se-
quences. Each anntation string must have the same number of characters as the
corresponding sequence. In addition to the characters defined in the annotation
character set the character "-" can be used in the annotation strings for masking
sequence parts.

annCharset character string listing all characters used in annotation sorted ascending accord-
ing to the C locale, up to 32 characters are possible

Details

Annotation information for sequences

For the annotation specific kernel additional annotation information is added to the sequence data.
The annotation for one sequence consist of a character string with a single annotation character per
position, i.e. the annotation sequence has the same length as the sequence. The character set used
for annotation is defined user specific on XStringSet level with up to 32 different characters. Each
biological sequence needs an associated annotation sequence assigned consisting of characters from
this character set. The evaluation of annotation information as part of the kernel processing during
generation of a kernel matrix or an explict representation can be activated per kernel object.

Assignment of annotation information

The annotation characterset consists of a character string listing all allowed annotation characters in
alphabetical order. Any single byte ASCII character from the decimal range between 32 and 126,
except 45, is allowed. The character ’-’ (ASCII dec. 45) is used for masking sequence parts which
should not be evaluated. As it has assigned this special masking function it must not be used in
annotation charactersets.

The annotation characterset is assigned to the sequence set with the annotationMetadata func-
tion (see below). It is stored in the metadata list as named element annotationCharset and can
be stored along with other metadata assigned to the sequence set. The annotation strings for the
individual sequences are represented as a character vector and can be assigned to the XStringSet
together with the assignment of the annotation characterset as element related metadata. Element
related metadata is stored in a DataFrame and the columns of this data frame represent the dif-
ferent types of metadata that can be assigned in parallel. The column name for the sequence re-
lated annotation information is "annotation". (see Example section for an example of annotation
metadata assignment) Annotation metadata can be assigned together with position metadata (see
positionMetadata to a sequence set.

Annotation Specific Kernel Processing

The annotation specific kernel variant of a kernel, e.g. the spectrum kernel appends the annota-
tion characters corresponding to a specific kmer to this kmer and treats the resulting pattern as one
feature - the basic unit for similarity determination. The full feature space of an annotation specific
spectrum kernel is the cartesian product of the set of all possible sequence patterns with the set of
all possible anntotions patterns. Dependent on the number of characters in the annotation character
set the feature space increases drastically compared to the normal spectrum kernel. But through
annotation the similarity consideration between two sequences can be split into independent parts
considered separately, e.g. coding/non-coding, exon/intron, etc... . For amino acid sequences e.g.
a heptad annotation (consisting of a usually periodic pattern of 7 characters (a to g) can be used as
annotation like in prediction of coiled coil structures. (see reference Mahrenholz, 2011)

100 showAnnotatedSeq

The flag annSpec passed during creation of a kernel object controls whether annotation information
is evaluated by the kernel. (see functions spectrumKernel, gappyPairKernel, motifKernel) In
this way sequences with annotation can be evaluated annotation specific and without annotation
through using two different kernel objects. (see examples below) The annotation specific kernel
variant is available for all kernels in this package except for the mismatch kernel.

annotationMetadata function

With this function annotation metadata can be assigned to sequences defined as XStringSet (or
BioVector). The sequence annotation strings are stored as element related information and can be
retrieved with the method mcols. The characters used for anntation are stored as annotation char-
acterset for the sequence set and can be retrieved with the method metadata. For the assignment of
annotation metadata to biological sequences this function should be used instead of the lower level
functions metadata and mcols. The function annotationMetadata performs several checks and
also takes care that other metadata or element metadata assigned to the object is kept. Annotation
metadata are deleted if the parameters annCharset and annotation are set to NULL.

showAnnotatedSeq function

This function displays individual sequences aligned with the annotation string with 50 positions
per line. The two header lines show the start postion for each bock of 10 characters.

Accessor-like methods

The method annotationMetadata<- assigns annotation metadata to a sequence set. In the assign-
ment also the annotation characterset must be specified. Annotation characters which are not listed
in the characterset are treated like invalid sequence characters. They interrupt open patterns and
lead to a restart of the pattern search at this position.

Value

annotationMetadata: a character vector with the annotation strings

annotationCharset: a character vector with the annotation

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

C.C. Mahrenholz, I.G. Abfalter, U. Bodenhofer, R. Volkmer and S. Hochreiter (2011) Complex net-
works govern coiled coil oligomerization - predicting and profiling by means of a machine learning
approach. Mol. Cell. Proteomics, 10(5):M110.004994 DOI: doi:10.1074/mcp.M110.004994.

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1074/mcp.M110.004994
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

showAnnotatedSeq 101

See Also

spectrumKernel, gappyPairKernel, motifKernel, positionMetadata, metadata, mcols

Examples

create a set of annotated DNA sequences
instead of user provided sequences in XStringSet format
for this example a set of DNA sequences is created
x <- DNAStringSet(c("AGACTTAAGGGACCTGGTCACCACGCTCGGTGAGGGGGACGGGGTGT",

"ATAAAGGTTGCAGACATCATGTCCTTTTTGTCCCTAATTATTTCAGC",
"CAGGAATCAGCACAGGCAGGGGCACGGCATCCCAAGACATCTGGGCC",
"GGACATATACCCACCGTTACGTGTCATACAGGATAGTTCCACTGCCC",
"ATAAAGGTTGCAGACATCATGTCCTTTTTGTCCCTAATTATTTCAGC"))

names(x) <- paste("S", 1:length(x), sep="")
define the character set used in annotation
the masking character '-' is is not part of the character set
anncs <- "ei"
annotation strings for each sequence as character vector
in the third and fourth sample a part of the sequence is masked
annotStrings <- c("eeeeeeeeeeeeiiiiiiiiieeeeeeeeeeeeeeeeiiiiiiiiii",

"eeeeeeeeeiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee",
"---------eeeeeeeeeeeeeeeeiiiiiiiiiiiiiiiiiiiiii",
"eeeeeeeeeeeeeeeeeeeeeeeiiiiiiiiiiiiiiiiiiii----",
"eeeeeeeeeeeeiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee")

assign metadata to DNAString object
annotationMetadata(x, annCharset=anncs) <- annotStrings
show annotation
annotationMetadata(x)
annotationCharset(x)

show sequence 3 aligned with annotation string
showAnnotatedSeq(x, sel=3)

create annotation specific spectrum kernel
speca <- spectrumKernel(k=3, annSpec=TRUE, normalized=FALSE)

show details of kernel object
kernelParameters(speca)

this kernel object can be now be used in a classification or regression
task in the usual way or you can use the kernel for example to generate
the kernel matrix for use with another learning method in another R
package.
kma <- speca(x)
kma[1:5,1:5]
generate a dense explicit representation for annotation-specific kernel
era <- getExRep(x, speca, sparse=FALSE)
era[1:5,1:8]

when a standard spectrum kernel is used with annotated
sequences the anntotation information is not evaluated
spec <- spectrumKernel(k=3, normalized=FALSE)
km <- spec(x)
km[1:5,1:5]

finally delete annotation metadata if no longer needed

102 spectrumKernel

annotationMetadata(x) <- NULL
show empty metadata
annotationMetadata(x)
annotationCharset(x)

spectrumKernel Spectrum Kernel

Description

Create a spectrum kernel object

Usage

spectrumKernel(k = 3, r = 1, annSpec = FALSE, distWeight = numeric(0),
normalized = TRUE, exact = TRUE, ignoreLower = TRUE, presence = FALSE,
revComplement = FALSE, mixCoef = numeric(0))

S4 method for signature 'SpectrumKernel'
getFeatureSpaceDimension(kernel, x)

Arguments

k length of the substrings (also called kmers). This parameter defines the size of
the feature space, i.e. the total number of features considered in this kernel is
|A|^k, with |A| as the size of the alphabet (4 for DNA and RNA sequences and
21 for amino acid sequences). When multiple kernels with different k values
should be generated e.g. for model selection a range e.g. k=3:5 can be specified.
In this case a list of kernel objects with the individual k values from the range is
generated as result. Default=3

r exponent which must be > 0 (details see below). Default=1

annSpec boolean that indicates whether sequence annotation should be taken into account
(details see on help page for annotationMetadata). For the annotation specific
spectrum kernel the total number of features increases to |A|^k * |a|^k with |A|
as the size of the sequence alphabet and |a| as the size of the annotation alphabet.
Default=FALSE

distWeight a numeric distance weight vector or a distance weighting function (details see
on help page for gaussWeight). Default=NULL

normalized a kernel matrix or explicit representation generated with this kernel will be nor-
malized(details see below). Default=TRUE

exact use exact character set for the evaluation (details see below). Default=TRUE

ignoreLower ignore lower case characters in the sequence. If the parameter is not set lower
case characters are treated like uppercase. Default=TRUE

presence if this parameter is set only the presence of a kmers will be considered, otherwise
the number of occurances of the kmer is used. Default=FALSE

revComplement if this parameter is set a kmer and its reverse complement are treated as the same
feature. Default=FALSE

spectrumKernel 103

mixCoef mixing coefficients for the mixture variant of the spectrum kernel. A numeric
vector of length k is expected for this parameter with the unused components in
the mixture set to 0. Default=numeric(0)

kernel a sequence kernel object

x one or multiple biological sequences in the form of a DNAStringSet, RNAStringSet,
AAStringSet (or as BioVector)

Details

Creation of kernel object

The function ’spectrumKernel’ creates a kernel object for the spectrum kernel. This kernel ob-
ject can then be used with a set of DNA-, RNA- or AA-sequences to generate a kernel matrix or an
explicit representation for this kernel. The spectrum kernel uses all subsequences for length k (also
called kmers). For sequences shorter than k the self similarity (i.e. the value on the main diagonal
in the square kernel matrix) is 0. The explicit representation contains only zeros for such a sample.
Dependent on the learning task it might make sense to remove such sequences from the data set as
they do not contribute to the model but still influence performance values.

For values different from 1 (=default value) parameter r leads to a transfomation of similarities
by taking each element of the similarity matrix to the power of r. Only integer values larger than 1
should be used for r in context with SVMs requiring positive definite kernels. If normalized=TRUE,
the feature vectors are scaled to the unit sphere before computing the similarity value for the kernel
matrix. For two samples with the feature vectors x and y the similarity is computed as:

s =
x⃗T y⃗

∥x⃗∥∥y⃗∥

For an explicit representation generated with the feature map of a normalized kernel the rows are
normalized by dividing them through their Euclidean norm. For parameter exact=TRUE the se-
quence characters are interpreted according to an exact character set. If the flag is not set ambigous
characters from the IUPAC characterset are also evaluated. For sequences shorter than k the self
similarity (i.e. the value on the main diagonal in the square kernel matrix) is 0.

The annotation specific variant (for details see annotationMetadata) and the position dependent
variants (for details see positionMetadata) either in the form of a position specific or a distance
weighted kernel are supported for the spectrum kernel. The generation of an explicit representation
is not possible for the position dependent variants of this kernel.

Creation of kernel matrix

The kernel matrix is created with the function getKernelMatrix or via a direct call with the kernel
object as shown in the examples below.

Value

spectrumKernel: upon successful completion, the function returns a kernel object of class SpectrumKernel.

of getDimFeatureSpace: dimension of the feature space as numeric value

Author(s)

Johannes Palme

104 spectrumKernel

References

https://github.com/UBod/kebabs

C.S. Leslie, E. Eskin and W.S. Noble (2002) The spectrum kernel: a string kernel for SVM protein
classification. Proc. Pacific Symposium on Biocomputing, pp. 566-575.

U. Bodenhofer, K. Schwarzbauer, M. Ionescu, and S. Hochreiter (2009) Modelling position speci-
ficity in sequence kernels by fuzzy equivalence relations. Proc. Joint 13th IFSA World Congress
and 6th EUSFLAT Conference, pp. 1376-1381, Lisbon.

C.C. Mahrenholz, I.G. Abfalter, U. Bodenhofer, R. Volkmer and S. Hochreiter (2011) Complex net-
works govern coiled coil oligomerization - predicting and profiling by means of a machine learning
approach. Mol. Cell. Proteomics, 10(5):M110.004994. DOI: doi:10.1074/mcp.M110.004994.

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

kernelParameters-method, getKernelMatrix, getExRep, mismatchKernel, motifKernel, gappyPairKernel,
SpectrumKernel

Examples

instead of user provided sequences in XStringSet format
for this example a set of DNA sequences is created
RNA- or AA-sequences can be used as well with the spectrum kernel
dnaseqs <- DNAStringSet(c("AGACTTAAGGGACCTGGTCACCACGCTCGGTGAGGGGGACGGGGTGT",

"ATAAAGGTTGCAGACATCATGTCCTTTTTGTCCCTAATTATTTCAGC",
"CAGGAATCAGCACAGGCAGGGGCACGGCATCCCAAGACATCTGGGCC",
"GGACATATACCCACCGTTACGTGTCATACAGGATAGTTCCACTGCCC",
"ATAAAGGTTGCAGACATCATGTCCTTTTTGTCCCTAATTATTTCAGC"))

names(dnaseqs) <- paste("S", 1:length(dnaseqs), sep="")

create the kernel object for dimers without normalization
speck <- spectrumKernel(k=2, normalized=FALSE)
show details of kernel object
speck

generate the kernel matrix with the kernel object
km <- speck(dnaseqs)
dim(km)
km[1:5,1:5]

alternative way to generate the kernel matrix
km <- getKernelMatrix(speck, dnaseqs)
km[1:5,1:5]

Not run:
plot heatmap of the kernel matrix
heatmap(km, symm=TRUE)

End(Not run)

https://github.com/UBod/kebabs
https://doi.org/10.1074/mcp.M110.004994
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

SpectrumKernel-class 105

SpectrumKernel-class Spectrum Kernel Class

Description

Spectrum Kernel Class

Details

Instances of this class represent a kernel object for the spectrum kernel. The class is derived from
SequenceKernel.

Slots

k length of the substrings considered by the kernel

r exponent (for details see spectrumKernel)

annSpec when set the kernel evaluates annotation information

distWeight distance weighting function or vector

normalized data generated with this kernel object is normalized

exact use exact character set for evaluation

ignoreLower ignore lower case characters in the sequence

presence consider only the presence of kmers not their counts

revComplement consider a kmer and its reverse complement as the same feature

mixCoef mixing coefficients for mixture kernel

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

106 SVMInformation-class

SVMInformation-class SVM Information Class

Description

SVM Information Class

Details

Instances of this class store SVM related information.

Slots

availPackages installed SVM packages

reqSVM user requested SVM implementation

reqPackage user requested package

reqSVMPar user requested SVM parameters

reqKernel user requested kernel

reqExplicit user requested indictor of expl. rep. processing

reqExplicitType user requested expl. rep. type

reqFeatureType user requested feature type

selSVM selected SVM implementation

selPackage selected package

selSVMPar selected SVM parameters

selKernel selected kernel

selExplicit selected indictor of expl. rep. processing

explicitKernel kernel for explicit representation

featureWeights indicator for feature weights

weightLimit cutoff value for feature weights

probModel indicator for probability model

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

symmetricPairKernel 107

symmetricPairKernel Symmetric Pair Kernel

Description

Create a symmetric pair kernel object

Usage

symmetricPairKernel(siKernel, kernelType = c("mean", "TPPK"), r = 1)

Arguments

siKernel kernel for single instances

kernelType defines the type of pair kernel. It specifies in which way the similarity between
two pairs of sequences are computed. Allowed values are "mean", and "TPPK"
(see also details section). Default="mean"

r exponent which must be > 0 (details see below). Default=1

Details

Creation of kernel object

The function ’symmetricPairKernel’ creates a kernel object for the symmetric pair kernel. This
kernel is an example for multiple instance learning and can be used for learning based on pairs of
sequences. The single instance kernel passed to the symmetric pair kernel computes a similarity
between two individual sequences giving a similarity for one pair of sequences. The symmetric pair
kernel function gets as input two pairs of sequences and computes a similarity value between the
two pairs. This similarity is computed dependent on the value of the argument kernelType from
the similarities delivered by the single instance kernel in the following way:

mean (arithmetic mean):

k(<a,b>, <c,d>) = 1/4 * (k(a,c) + k(a,d) + k(b,c) + k(b,d))

TPKK (tensor pairwise product kernel):

k(<a,b>, <c,d>) = (k(a,c) * k(b,d) + k(a,d) * k(b,c))

Every sequence kernel available in KeBABS can be used as single instance kernel for the symmetric
pair kernel allowing to create similarity measures between two pairs of sequences based on different
similarity measures between individual sequences.

The row names and column names of a kernel matrix generated from a symmetric pair kernel object
describe the sequence pair with the names of the individual sequences in the pair separated by the
underscore character.

For values different from 1 (=default value) parameter r leads to a transfomation of similarities by
taking each element of the similarity matrix to the power of r. Only integer values larger than 1
should be used for r in context with SVMs requiring positive definite kernels.

The symmetricPairKernel can be used in sequence based learning like any single instance kernel.
Label values are defined against pairs of sequences in this case. Explicit representation, feature

108 symmetricPairKernel

weights and prediction profiles are not available for the symmetric pair kernel. As kernels computed
through sums and products of postive definite kernels all variants of this kernel are positive definite.

Value

symmetricPairKernel: upon successful completion, the function returns a kernel object of class
SymmetricPairKernel.

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

M. Hue and J.-P.Vert (2010) On learning with kernels for unordered pairs. Proc. 27th Int. Conf. on
Machine Learning, pp. 463-470.

A. Ben-Hur and W.S. Noble (2005) Kernel methods for predicting protein-protein interactions.

T. Gaertner, P.A. Flach, A. Kowalczyk, and A.J. Smola (2002) Multi-instance kernels. Proc. 19th
Int. Conf. on Machine Learning, pp. 179-186.

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

See Also

kernelParameters-method, getKernelMatrix, spectrumKernel, mismatchKernel, motifKernel,
gappyPairKernel, SymmetricPairKernel

Examples

load sample sequences from transcription factor binding dataset
data(TFBS)
in this example we just use the first 30 sequences and rename samples
x <- enhancerFB[1:30]
names(x) <- paste("S", 1:length(x), sep="")

create the single instance kernel object
specK5 <- spectrumKernel(k=5)
show details of single instance kernel object
specK5

create the symmetric pair kernel object for the single instance kernel
tppk <- symmetricPairKernel(siKernel=specK5, kernelType="TPPK")

generate the kernel matrix with the symmetric pair kernel object which
contains similarity values between two pairs of sequences.
Hint: The kernel matrix for the single instance kernel is computed
internally.
km <- tppk(x)
dim(km)

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

SymmetricPairKernel-class 109

km[1:5,1:5]

Not run:
plot heatmap of the kernel matrix
heatmap(km, symm=TRUE)

End(Not run)

SymmetricPairKernel-class

Symmetric Pair Kernel Class

Description

Symmetric Pair Kernel Class

Details

Instances of this class represent a kernel object for the symmetric pair kernel. The kernel does not
compute similarity between single samples but between two pairs of samples based on a regular
sequence kernel for single samples. The class is derived from SequenceKernel.

Slots

siKernel single instance kernel

kernelType type of pair kernel

r exponent (for details see gappyPairKernel)

Author(s)

Johannes Palme

References

https://github.com/UBod/kebabs

J. Palme, S. Hochreiter, and U. Bodenhofer (2015) KeBABS: an R package for kernel-based anal-
ysis of biological sequences. Bioinformatics, 31(15):2574-2576. DOI: doi:10.1093/bioinformatics/
btv176.

https://github.com/UBod/kebabs
https://doi.org/10.1093/bioinformatics/btv176
https://doi.org/10.1093/bioinformatics/btv176

Index

∗ annotation
showAnnotatedSeq, 98

∗ cross
kbsvm,BioVector-method, 37
performCrossValidation,KernelMatrix-method,

68
∗ datasets

kebabsData, 47
∗ distance

linWeight, 54
∗ explicit

getExRep, 21
∗ feature

getFeatureWeights, 24
getPredictionProfile,BioVector-method,

27
getPredProfMixture,BioVector-method,

30
kbsvm,BioVector-method, 37
predict,KBModel-method, 83

∗ gappy
gappyPairKernel, 15

∗ grid
kbsvm,BioVector-method, 37
performCrossValidation,KernelMatrix-method,

68
performGridSearch, 72
performModelSelection, 77

∗ instance
symmetricPairKernel, 107

∗ kbsvm
kbsvm,BioVector-method, 37
performCrossValidation,KernelMatrix-method,

68
performGridSearch, 72
performModelSelection, 77

∗ kebabs
kebabsDemo, 48

∗ kernel
gappyPairKernel, 15
linearKernel, 52
linWeight, 54
mismatchKernel, 59

motifKernel, 64
seqKernelAsChar, 92
showAnnotatedSeq, 98
spectrumKernel, 102
symmetricPairKernel, 107

∗ learning
symmetricPairKernel, 107

∗ linearKernel
linearKernel, 52

∗ methods
computeROCandAUC, 7
evaluatePrediction, 11
gappyPairKernel, 15
genRandBioSeqs, 20
getExRep, 21
getFeatureWeights, 24
getPredictionProfile,BioVector-method,

27
getPredProfMixture,BioVector-method,

30
kbsvm,BioVector-method, 37
linWeight, 54
mismatchKernel, 59
motifKernel, 64
performCrossValidation,KernelMatrix-method,

68
performGridSearch, 72
performModelSelection, 77
plot,PredictionProfile,missing-method,

79
predict,KBModel-method, 83
seqKernelAsChar, 92
showAnnotatedSeq, 98
spectrumKernel, 102
symmetricPairKernel, 107

∗ mismatchKernel
mismatchKernel, 59

∗ mismatch
mismatchKernel, 59

∗ model
kbsvm,BioVector-method, 37
performCrossValidation,KernelMatrix-method,

68

110

INDEX 111

performGridSearch, 72
performModelSelection, 77

∗ motifKernel
motifKernel, 64

∗ motif
motifKernel, 64

∗ multiple
symmetricPairKernel, 107

∗ pair
gappyPairKernel, 15
symmetricPairKernel, 107

∗ performance
computeROCandAUC, 7
evaluatePrediction, 11

∗ plot
plot,PredictionProfile,missing-method,

79
∗ prediction

computeROCandAUC, 7
evaluatePrediction, 11
getPredictionProfile,BioVector-method,

27
getPredProfMixture,BioVector-method,

30
heatmap,PredictionProfile,missing-method,

32
plot,PredictionProfile,missing-method,

79
predict,KBModel-method, 83

∗ predict
predict,KBModel-method, 83

∗ profiles
heatmap,PredictionProfile,missing-method,

32
∗ profile

getPredictionProfile,BioVector-method,
27

getPredProfMixture,BioVector-method,
30

plot,PredictionProfile,missing-method,
79

predict,KBModel-method, 83
∗ representation

getExRep, 21
∗ search

kbsvm,BioVector-method, 37
performCrossValidation,KernelMatrix-method,

68
performGridSearch, 72
performModelSelection, 77

∗ selection
kbsvm,BioVector-method, 37

performCrossValidation,KernelMatrix-method,
68

performGridSearch, 72
performModelSelection, 77

∗ spectrumKernel
spectrumKernel, 102

∗ spectrum
spectrumKernel, 102

∗ symmetricPairKernel
symmetricPairKernel, 107

∗ symmetric
symmetricPairKernel, 107

∗ training
kbsvm,BioVector-method, 37

∗ validation
kbsvm,BioVector-method, 37
performCrossValidation,KernelMatrix-method,

68
∗ weights

getFeatureWeights, 24
getPredictionProfile,BioVector-method,

27
getPredProfMixture,BioVector-method,

30
kbsvm,BioVector-method, 37
predict,KBModel-method, 83

[,BioVector,index,missing,ANY-method
(BioVector), 3

[,BioVector-method (BioVector), 3
[,ExplicitRepresentation,index,index,ANY-method

(ExplicitRepresentationAccessors),
14

[,ExplicitRepresentationDense,index,index,ANY-method
(ExplicitRepresentationAccessors),
14

[,ExplicitRepresentationDense,index,missing,ANY-method
(ExplicitRepresentationAccessors),
14

[,ExplicitRepresentationDense,missing,index,ANY-method
(ExplicitRepresentationAccessors),
14

[,ExplicitRepresentationSparse,index,index,ANY-method
(ExplicitRepresentationAccessors),
14

[,ExplicitRepresentationSparse,index,index,logical-method
(ExplicitRepresentationAccessors),
14

[,ExplicitRepresentationSparse,index,index,missing-method
(ExplicitRepresentationAccessors),
14

[,ExplicitRepresentationSparse,index,missing,ANY-method
(ExplicitRepresentationAccessors),

112 INDEX

14
[,ExplicitRepresentationSparse,index,missing,logical-method

(ExplicitRepresentationAccessors),
14

[,ExplicitRepresentationSparse,index,missing,missing-method
(ExplicitRepresentationAccessors),
14

[,ExplicitRepresentationSparse,missing,index,ANY-method
(ExplicitRepresentationAccessors),
14

[,ExplicitRepresentationSparse,missing,index,logical-method
(ExplicitRepresentationAccessors),
14

[,ExplicitRepresentationSparse,missing,index,missing-method
(ExplicitRepresentationAccessors),
14

[,KernelMatrix,index,index,ANY-method
(KernelMatrixAccessors), 51

[,KernelMatrix,index,missing,ANY-method
(KernelMatrixAccessors), 51

[,KernelMatrix,missing,index,ANY-method
(KernelMatrixAccessors), 51

[,PredictionProfile,index,ANY,ANY-method
(PredictionProfileAccessors),
87

%*%,dgRMatrix,numeric-method
(ExplicitRepresentationAccessors),
14

%*%,matrix,dgRMatrix-method
(ExplicitRepresentationAccessors),
14

AAString, 28, 30
AAStringSet, 5, 17, 21, 28, 30, 38, 40, 41, 54,

59, 65, 84, 93, 98, 103
AAVector, 6
AAVector (BioVector), 3
AAVector-class (BioVector-class), 6
annotationCharset (showAnnotatedSeq), 98
annotationCharset,BioVector-method

(showAnnotatedSeq), 98
annotationCharset,XStringSet-method

(showAnnotatedSeq), 98
annotationMetadata, 4, 16, 17, 22, 57, 60,

64, 65, 73, 75, 93, 102, 103
annotationMetadata (showAnnotatedSeq),

98
annotationMetadata,BioVector-method

(showAnnotatedSeq), 98
annotationMetadata,XStringSet-method

(showAnnotatedSeq), 98
annotationMetadata<-

(showAnnotatedSeq), 98

annotationMetadata<-,BioVector-method
(showAnnotatedSeq), 98

annotationMetadata<-,XStringSet-method
(showAnnotatedSeq), 98

AnnotationSpecificKernel
(showAnnotatedSeq), 98

annotationSpecificKernel
(showAnnotatedSeq), 98

as.character,BioVector-method
(BioVector), 3

as.KernelMatrix, 94
as.KernelMatrix

(KernelMatrixAccessors), 51
as.KernelMatrix,matrix-method

(KernelMatrixAccessors), 51
auc (ROCDataAccessors), 91
auc,ROCData-method (ROCDataAccessors),

91
auc<- (ROCDataAccessors), 91
auc<-,ROCData-method

(ROCDataAccessors), 91

baselines (PredictionProfileAccessors),
87

baselines,PredictionProfile-method
(PredictionProfileAccessors),
87

BioVector, 3, 6, 17, 21, 28, 30, 38, 41, 54, 59,
65, 84, 93, 98, 103

BioVector-class, 6

c,BioVector-method (BioVector), 3
ccannot (kebabsData), 47
ccgroups (kebabsData), 47
ccseq (kebabsData), 47
character (showAnnotatedSeq), 98
class:AAVector (BioVector-class), 6
class:BioVector (BioVector-class), 6
class:ControlInformation

(ControlInformation-class), 8
class:CrossValidationResult

(CrossValidationResult-class),
9

class:DNAVector (BioVector-class), 6
class:ExplicitRepresentation

(ExplicitRepresentation), 13
class:ExplicitRepresentationDense

(ExplicitRepresentation), 13
class:ExplicitRepresentationSparse

(ExplicitRepresentation), 13
class:GappyPairKernel

(GappyPairKernel-class), 19
class:KBModel (KBModel-class), 35

INDEX 113

class:KernelMatrix
(KernelMatrix-class), 50

class:MismatchKernel
(MismatchKernel-class), 61

class:ModelSelectionResult
(ModelSelectionResult-class),
62

class:MotifKernel (MotifKernel-class),
67

class:PredictionProfile
(PredictionProfile-class), 87

class:RNAVector (BioVector-class), 6
class:ROCData (ROCData-class), 90
class:SequenceKernel

(SequenceKernel-class), 95
class:SpectrumKernel

(SpectrumKernel-class), 105
class:SVMInformation

(SVMInformation-class), 106
class:SymmetricPairKernel

(SymmetricPairKernel-class),
109

computeROCandAUC, 7
ControlInformation, 35
ControlInformation

(ControlInformation-class), 8
ControlInformation-class, 8
cross.validation

(performCrossValidation,KernelMatrix-method),
68

CrossValidation
(performCrossValidation,KernelMatrix-method),
68

crossValidation, 41, 43
crossValidation

(performCrossValidation,KernelMatrix-method),
68

CrossValidationResult, 35, 36
CrossValidationResult

(CrossValidationResult-class),
9

CrossValidationResult-class, 9
CrossValidationResultAccessors, 10
cvResult, 10, 44, 70, 77, 78
cvResult (KBModelAccessors), 36
cvResult,KBModel-method

(KBModelAccessors), 36
cvResult<- (KBModelAccessors), 36
cvResult<-,KBModel-method

(KBModelAccessors), 36

dgCMatrix, 52, 53
dgRMatrix, 14

DistanceWeightedKernel (linWeight), 54
distanceWeightedKernel (linWeight), 54
DNAString, 28, 30
DNAStringSet, 5, 17, 21, 28, 30, 38, 40, 41,

54, 59, 65, 84, 93, 98, 103
DNAVector, 6
DNAVector (BioVector), 3
DNAVector-class (BioVector-class), 6

e1071, 40–44
elementMetadata, 5
enhancerFB (kebabsData), 47
evaluatePrediction, 11, 85
ExplicitRepresentation, 13, 14
ExplicitRepresentation-class

(ExplicitRepresentation), 13
ExplicitRepresentationAccessors, 14
ExplicitRepresentationDense, 14, 22, 23
ExplicitRepresentationDense

(ExplicitRepresentation), 13
ExplicitRepresentationDense-class

(ExplicitRepresentation), 13
ExplicitRepresentationSparse, 14, 22, 23
ExplicitRepresentationSparse

(ExplicitRepresentation), 13
ExplicitRepresentationSparse-class

(ExplicitRepresentation), 13
expWeight (linWeight), 54

featureWeights, 25, 26, 28, 29, 31
featureWeights (KBModelAccessors), 36
featureWeights,KBModel-method

(KBModelAccessors), 36
featureWeights<- (KBModelAccessors), 36
featureWeights<-,KBModel-method

(KBModelAccessors), 36
folds (CrossValidationResultAccessors),

10
folds,CrossValidationResult-method

(CrossValidationResultAccessors),
10

fpr (ROCDataAccessors), 91
fpr,ROCData-method (ROCDataAccessors),

91
fpr<- (ROCDataAccessors), 91
fpr<-,ROCData-method

(ROCDataAccessors), 91
fullModel

(ModelSelectionResultAccessors),
63

fullModel,ModelSelectionResult-method
(ModelSelectionResultAccessors),
63

114 INDEX

GappyPairKernel, 17, 18
GappyPairKernel

(GappyPairKernel-class), 19
gappyPairKernel, 15, 19, 23, 40, 44, 55, 57,

60, 66, 75, 82, 94, 100, 101, 104,
108, 109

GappyPairKernel-class, 19
gaussWeight, 16, 64, 102
gaussWeight (linWeight), 54
genRandBioSeqs, 20
getExRep, 18, 21, 38, 41, 44, 60, 66, 84, 94,

104
getExRepQuadratic (getExRep), 21
getFeatureSpaceDimension

(spectrumKernel), 102
getFeatureSpaceDimension,ANY-method

(spectrumKernel), 102
getFeatureSpaceDimension,GappyPairKernel-method

(gappyPairKernel), 15
getFeatureSpaceDimension,MismatchKernel-method

(mismatchKernel), 59
getFeatureSpaceDimension,MotifKernel-method

(motifKernel), 64
getFeatureSpaceDimension,SpectrumKernel-method

(spectrumKernel), 102
getFeatureWeights, 24, 43, 44
getKernelMatrix, 17, 18, 23, 38, 40, 44, 60,

66, 84, 103, 104, 108
getKernelMatrix (seqKernelAsChar), 92
getPredictionProfile, 25, 26, 31, 34, 41,

82, 85
getPredictionProfile

(getPredictionProfile,BioVector-method),
27

getPredictionProfile,BioVector-method,
27

getPredictionProfile,XString-method
(getPredictionProfile,BioVector-method),
27

getPredictionProfile,XStringSet-method
(getPredictionProfile,BioVector-method),
27

getPredProfMixture, 29
getPredProfMixture

(getPredProfMixture,BioVector-method),
30

getPredProfMixture,BioVector-method,
30

getPredProfMixture,XString-method
(getPredProfMixture,BioVector-method),
30

getPredProfMixture,XStringSet-method

(getPredProfMixture,BioVector-method),
30

getSVMSlotValue (KBModelAccessors), 36
grid.search (performGridSearch), 72
gridColumns

(ModelSelectionResultAccessors),
63

gridColumns,ModelSelectionResult-method
(ModelSelectionResultAccessors),
63

gridErrors
(ModelSelectionResultAccessors),
63

gridErrors,ModelSelectionResult-method
(ModelSelectionResultAccessors),
63

gridRows
(ModelSelectionResultAccessors),
63

gridRows,ModelSelectionResult-method
(ModelSelectionResultAccessors),
63

GridSearch (performGridSearch), 72
gridSearch, 41, 43, 69
gridSearch (performGridSearch), 72

heatmap, 33
heatmap

(heatmap,PredictionProfile,missing-method),
32

heatmap,PredictionProfile,missing-method,
32

heatmap,PredictionProfile-method
(heatmap,PredictionProfile,missing-method),
32

isUserDefined (seqKernelAsChar), 92
isUserDefined,SequenceKernel-method

(seqKernelAsChar), 92

KBModel, 25, 26, 30, 36, 41, 44, 63, 84, 85
KBModel (KBModel-class), 35
KBModel-class, 35
KBModelAccessors, 36
kbsvm, 13, 22, 23, 25, 26, 69, 70, 72–75, 77,

78, 84, 85
kbsvm (kbsvm,BioVector-method), 37
kbsvm,BioVector-method, 37
kbsvm,ExplicitRepresentation-method

(kbsvm,BioVector-method), 37
kbsvm,KernelMatrix-method

(kbsvm,BioVector-method), 37

INDEX 115

kbsvm,XStringSet-method
(kbsvm,BioVector-method), 37

KEBABS (kebabsDemo), 48
KeBABS (kebabsDemo), 48
kebabs (kebabsDemo), 48
kebabsCollectInfo, 46
kebabsData, 47
kebabsDemo, 48
KernelMatrix, 51–53, 94
KernelMatrix (KernelMatrix-class), 50
KernelMatrix-class, 50
KernelMatrixAccessors, 51
kernelParameters, 60
kernelParameters (seqKernelAsChar), 92
kernelParameters,GappyPairKernel-method

(seqKernelAsChar), 92
kernelParameters,MismatchKernel-method

(seqKernelAsChar), 92
kernelParameters,MotifKernel-method

(seqKernelAsChar), 92
kernelParameters,SpectrumKernel-method

(seqKernelAsChar), 92
kernelParameters,SymmetricPair-method

(seqKernelAsChar), 92
kernelParameters,SymmetricPairKernel-method

(seqKernelAsChar), 92
kernelParameters-method

(seqKernelAsChar), 92
kernlab, 38, 40–44
ksvm, 22

legend, 80
length (BioVector), 3
length,BioVector-method (BioVector), 3
LiblineaR, 39–43
linearKernel, 52, 94
linWeight, 54

mcols, 4, 57, 82, 100, 101
metadata, 4, 5, 57, 100, 101
MismatchKernel, 60
MismatchKernel (MismatchKernel-class),

61
mismatchKernel, 18, 23, 40, 44, 59, 61, 66,

75, 82, 94, 104, 108
MismatchKernel-class, 61
model.selection

(performModelSelection), 77
modelOffset (KBModelAccessors), 36
modelOffset,KBModel-method

(KBModelAccessors), 36
modelOffset<- (KBModelAccessors), 36

modelOffset<-,KBModel-method
(KBModelAccessors), 36

ModelSelection (performModelSelection),
77

modelSelection, 41, 43, 69
modelSelection (performModelSelection),

77
ModelSelectionResult, 35, 36, 63
ModelSelectionResult

(ModelSelectionResult-class),
62

ModelSelectionResult-class, 62
ModelSelectionResultAccessors, 63
modelSelResult, 44, 63, 73, 74, 77, 78
modelSelResult (KBModelAccessors), 36
modelSelResult,KBModel-method

(KBModelAccessors), 36
modelSelResult<- (KBModelAccessors), 36
modelSelResult<-,KBModel-method

(KBModelAccessors), 36
MotifKernel, 66
MotifKernel (MotifKernel-class), 67
motifKernel, 18, 23, 40, 44, 55, 57, 60, 64,

67, 75, 82, 94, 100, 101, 104, 108
MotifKernel-class, 67
mtext, 81

names (BioVector), 3
names,BioVector-method (BioVector), 3
names<- (BioVector), 3
names<-,BioVector-method (BioVector), 3

par, 80, 81
performance, 74
performance

(ModelSelectionResultAccessors),
63

performance,CrossValidationResult-method
(CrossValidationResultAccessors),
10

performance,ModelSelectionResult-method
(ModelSelectionResultAccessors),
63

performCrossValidation, 77
performCrossValidation

(performCrossValidation,KernelMatrix-method),
68

performCrossValidation,ExplicitRepresentation-method
(performCrossValidation,KernelMatrix-method),
68

performCrossValidation,KernelMatrix-method,
68

performGridSearch, 72, 77, 78

116 INDEX

performModelSelection, 75, 77
plot, 28, 29, 31, 70, 81
plot

(plot,PredictionProfile,missing-method),
79

plot,CrossValidationResult,missing-method
(plot,PredictionProfile,missing-method),
79

plot,CrossValidationResult-method
(plot,PredictionProfile,missing-method),
79

plot,ModelSelectionResult,missing-method
(plot,PredictionProfile,missing-method),
79

plot,ModelSelectionResult-method
(plot,PredictionProfile,missing-method),
79

plot,PredictionProfile,missing-method,
79

plot,PredictionProfile-method
(plot,PredictionProfile,missing-method),
79

plot,ROCData,missing-method
(plot,PredictionProfile,missing-method),
79

plot,ROCData-method
(plot,PredictionProfile,missing-method),
79

PositionDependentKernel (linWeight), 54
positionDependentKernel, 82
positionDependentKernel (linWeight), 54
positionMetadata, 4, 17, 60, 65, 73, 75, 93,

99, 101, 103
positionMetadata (linWeight), 54
positionMetadata,BioVector-method

(linWeight), 54
positionMetadata,XStringSet-method

(linWeight), 54
positionMetadata<- (linWeight), 54
positionMetadata<-,BioVector-method

(linWeight), 54
positionMetadata<-,XStringSet-method

(linWeight), 54
PositionSpecificKernel (linWeight), 54
positionSpecificKernel (linWeight), 54
predict, 7, 8, 11, 13, 22, 26, 28, 29, 31, 41, 44
predict (predict,KBModel-method), 83
predict,KBModel-method, 83
predict.KBModel

(predict,KBModel-method), 83
predict.kbsvm (predict,KBModel-method),

83

predict.ksvm, 44
predict.svm, 44
PredictionProfile, 29, 31, 33, 80, 85, 88
PredictionProfile

(PredictionProfile-class), 87
PredictionProfile-class, 87
PredictionProfileAccessors, 87
predictSVM, 89
predictSVM,ExpicitRepresentation-method

(predictSVM), 89
predictSVM,ExplicitRepresentation-method

(predictSVM), 89
predictSVM,KernelMatrix-method

(predictSVM), 89
predictSVM,missing-method (predictSVM),

89
predictSVM.KernelMatrix (predictSVM), 89
probabilityModel (KBModelAccessors), 36
probabilityModel,KBModel-method

(KBModelAccessors), 36
probabilityModel<- (KBModelAccessors),

36
probabilityModel<-,KBModel-method

(KBModelAccessors), 36
profiles (PredictionProfileAccessors),

87
profiles,PredictionProfile-method

(PredictionProfileAccessors),
87

RNAString, 28, 30
RNAStringSet, 5, 17, 21, 28, 30, 38, 40, 41,

54, 59, 65, 84, 93, 98, 103
RNAVector, 6
RNAVector (BioVector), 3
RNAVector-class (BioVector-class), 6
ROCData, 7, 8, 91
ROCData (ROCData-class), 90
ROCData-class, 90
ROCDataAccessors, 91

selGridCol
(ModelSelectionResultAccessors),
63

selGridCol,ModelSelectionResult-method
(ModelSelectionResultAccessors),
63

selGridRow
(ModelSelectionResultAccessors),
63

selGridRow,ModelSelectionResult-method
(ModelSelectionResultAccessors),
63

INDEX 117

seqKernelAsChar, 92
SequenceKernel, 19, 28, 30, 61, 67, 92, 105,

109
SequenceKernel (SequenceKernel-class),

95
sequenceKernel, 55
sequenceKernel (seqKernelAsChar), 92
SequenceKernel-class, 95
sequences (PredictionProfileAccessors),

87
sequences,PredictionProfile-method

(PredictionProfileAccessors),
87

set (showAnnotatedSeq), 98
show (show.BioVector), 96
show,BioVector-method (show.BioVector),

96
show,CrossValidationResult-method

(show.BioVector), 96
show,ExplicitRepresentationDense-method

(show.BioVector), 96
show,ExplicitRepresentationSparse-method

(show.BioVector), 96
show,GappyPairKernel-method

(show.BioVector), 96
show,KBModel-method (show.BioVector), 96
show,MismatchKernel-method

(show.BioVector), 96
show,ModelSelectionResult-method

(show.BioVector), 96
show,MotifKernel-method

(show.BioVector), 96
show,PredictionProfile-method

(show.BioVector), 96
show,ROCData-method (show.BioVector), 96
show,SpectrumKernel-method

(show.BioVector), 96
show,SVMInformation-method

(show.BioVector), 96
show,SymmetricPairKernel-method

(show.BioVector), 96
show.BioVector, 96
showAnnotatedSeq, 98
SpectrumKernel, 23, 103, 104
SpectrumKernel (SpectrumKernel-class),

105
spectrumKernel, 16, 18, 40, 44, 55, 57, 59,

60, 64, 66, 75, 82, 94, 100, 101, 102,
105, 108

SpectrumKernel-class, 105
stringdot, 5, 92
SVindex (KBModelAccessors), 36

SVindex,KBModel-method
(KBModelAccessors), 36

SVindex<- (KBModelAccessors), 36
SVindex<-,KBModel-method

(KBModelAccessors), 36
svm, 22, 44
SVMInformation, 35
SVMInformation (SVMInformation-class),

106
SVMInformation-class, 106
svmModel, 41
svmModel (KBModelAccessors), 36
svmModel,KBModel-method

(KBModelAccessors), 36
svmModel<- (KBModelAccessors), 36
svmModel<-,KBModel-method

(KBModelAccessors), 36
swdWeight (linWeight), 54
SymmetricPairKernel, 108
SymmetricPairKernel

(SymmetricPairKernel-class),
109

symmetricPairKernel, 107
SymmetricPairKernel-class, 109

TFBS (kebabsData), 47
tpr (ROCDataAccessors), 91
tpr,ROCData-method (ROCDataAccessors),

91
tpr<- (ROCDataAccessors), 91
tpr<-,ROCData-method

(ROCDataAccessors), 91
trainSVM (predictSVM), 89
trainSVM,ExplicitRepresentation-method

(predictSVM), 89
trainSVM,KernelMatrix-method

(predictSVM), 89

width (BioVector), 3
width,BioVector-method (BioVector), 3

XStringSet, 4–6, 41

yCC (kebabsData), 47
yFB (kebabsData), 47
yMC (kebabsData), 47
yReg (kebabsData), 47

	BioVector
	BioVector-class
	computeROCandAUC
	ControlInformation-class
	CrossValidationResult-class
	CrossValidationResultAccessors
	evaluatePrediction
	ExplicitRepresentation
	ExplicitRepresentationAccessors
	gappyPairKernel
	GappyPairKernel-class
	genRandBioSeqs
	getExRep
	getFeatureWeights
	getPredictionProfile,BioVector-method
	getPredProfMixture,BioVector-method
	heatmap,PredictionProfile,missing-method
	KBModel-class
	KBModelAccessors
	kbsvm,BioVector-method
	kebabsCollectInfo
	kebabsData
	kebabsDemo
	KernelMatrix-class
	KernelMatrixAccessors
	linearKernel
	linWeight
	mismatchKernel
	MismatchKernel-class
	ModelSelectionResult-class
	ModelSelectionResultAccessors
	motifKernel
	MotifKernel-class
	performCrossValidation,KernelMatrix-method
	performGridSearch
	performModelSelection
	plot,PredictionProfile,missing-method
	predict,KBModel-method
	PredictionProfile-class
	PredictionProfileAccessors
	predictSVM
	ROCData-class
	ROCDataAccessors
	seqKernelAsChar
	SequenceKernel-class
	show.BioVector
	showAnnotatedSeq
	spectrumKernel
	SpectrumKernel-class
	SVMInformation-class
	symmetricPairKernel
	SymmetricPairKernel-class
	Index

