Dr. Xiuwen Zheng (Department of Biostatistics, University of Washington, Seattle)
Jun 25, 2016
Whole-genome sequencing (WGS) data is being generated at an unprecedented rate
CoreArray (C++ library)
Two R packages
SeqArray provides the same capabilities as VCF
File: SeqArray/extdata/CEU_Exon.gds (387.3K)
|--+ description [ ] *
|--+ sample.id { Str8 90 ZIP_ra(30.8%), 222B }
|--+ variant.id { Int32 1348 ZIP_ra(35.7%), 1.9K }
|--+ position { Int32 1348 ZIP_ra(86.4%), 4.6K }
|--+ chromosome { Str8 1348 ZIP_ra(2.66%), 91B }
|--+ allele { Str8 1348 ZIP_ra(17.2%), 928B }
|--+ genotype [ ] *
| \--+ data { Bit2 2x90x1348 ZIP_ra(28.4%), 16.8K } *
|--+ phase [ ]
| \--+ data { Bit1 90x1348 ZIP_ra(0.36%), 55B } *
|--+ annotation [ ]
| |--+ id { Str8 1348 ZIP_ra(41.0%), 5.8K }
| |--+ qual { Float32 1348 ZIP_ra(0.91%), 49B }
| |--+ filter { Int32,factor 1348 ZIP_ra(0.89%), 48B } *
| |--+ info [ ]
| | |--+ AA { Str8 1348 ZIP_ra(24.2%), 653B } *
| | \--+ HM2 { Bit1 1348 ZIP_ra(117.2%), 198B } *
| \--+ format [ ]
| \--+ DP [ ] *
| \--+ data { Int32 90x1348 ZIP_ra(33.8%), 160.3K }
\--+ sample.annotation [ ]
\--+ family { Str8 90 ZIP_ra(34.7%), 135B }
Table 1: The key functions in the SeqArray package.
Function | Description |
---|---|
seqVCF2GDS | Reformats VCF files |
seqSetFilter | Defines a data subset of samples or variants |
seqGetData | Gets data from a SeqArray file with a defined filter |
seqApply | Applies a user-defined function over array margins |
seqParallel | Applies functions in a computing cluster |
# load the R package
library(SeqArray)
# open the file
genofile <- seqOpen("1KG_chr1.gds")
# apply a user-defined function over variants
system.time(afreq <- seqApply(genofile, "genotype",
FUN = function(x) { mean(x==0L, na.rm=TRUE) },
as.is="double", margin="by.variant")
)
10.8 minutes on Linux with Intel Xeon CPU @2GHz and 128GB RAM function(x) { mean(x==0L, na.rm=TRUE) }
is a user-defined function, where x
is an integer matrix:
0 – reference allele, 1 – the first alternative allele
seqParallel()
splits genotypes into 4 non-overlapping parts according to different cores.
# load the R package
library(parallel)
# create a computing cluster with 4 cores
seqParallelSetup(4)
# run in parallel
system.time(afreq <- seqParallel(gdsfile=genofile,
FUN = function(f) {
seqApply(f, "genotype", as.is="double", margin="by.variant",
FUN = function(x) mean(x==0L, na.rm=TRUE))
}, split = "by.variant")
)
3.1 minutes (vs. 10.8m in Test 1)
library(Rcpp)
# dynamically define an inline C/C++ function in R
cppFunction('double RefAlleleFreq(IntegerMatrix x) {
int nrow = x.nrow(), ncol = x.ncol();
int cnt=0, zero_cnt=0, g;
for (int i = 0; i < nrow; i++) {
for (int j = 0; j < ncol; j++) {
if ((g = x(i, j)) != NA_INTEGER) {
cnt ++;
if (g == 0) zero_cnt ++;
}
}}
return double(zero_cnt) / cnt;
}')
system.time(
afreq <- seqApply(genofile, "genotype", RefAlleleFreq,
as.is="double", margin="by.variant")
)
1.5 minutes (significantly faster! vs. 10.8m in Test 1)
SeqArray is of great interest to
SeqVarTools (Bioconductor)
SNPRelate (Bioconductor)
1000 Genomes Project: http://bochet.gcc.biostat.washington.edu/seqarray/1000genomes
Department of Biostatistics at University of Washington – Seattle
Genetic Analysis Center: